HEAD AND NECK RADIOLOGY / ORIGINAL PAPER
Assessing the accuracy of artificial intelligence in mandibular canal segmentation compared to semi-automatic segmentation on cone-beam computed tomography images
More details
Hide details
1
Department of Diagnostics, Chair of Practical Clinical Dentistry, Poznan University of Medical Sciences, Poznan, Poland
2
Doctoral School, Poznan University of Medical Sciences, Poznan, Poland
3
Kazimierczak Private Medical Practice, Bydgoszcz, Poland
4
Neuro Musculo Skeletal Lab (NMSK), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
5
Oral and Maxillofacial Surgery Lab (OMFS Lab), NMSK, IREC, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
6
Department of Oral and Maxillofacial Surgery, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
7
Department of Perioperative Dentistry, L. Rydygiera Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
These authors had equal contribution to this work
Submission date: 2025-02-25
Final revision date: 2025-02-28
Acceptance date: 2025-03-01
Publication date: 2025-04-10
Corresponding author
Julien Issa
Department of Diagnostics, Chair of Practical Clinical Dentistry, Poznan University of Medical Sciences, 70 Bukowska St., 60-812 Poznan, Poland
Pol J Radiol, 2025; 90: 172-179
KEYWORDS
TOPICS
ABSTRACT
Purpose:
This study aims to assess the accuracy of artificial intelligence (AI) in mandibular canal (MC) segmentation on cone-beam computed tomography (CBCT) compared to semi-automatic segmentation. The impact of third molar status (absent, erupted, impacted) on AI performance was also evaluated.
Material and methods:
A total of 150 CBCT scans (300 MCs) were retrospectively analysed. Semi-automatic MC segmentation was performed by experts using Romexis software, serving as the reference standard. AI-based segmentation was conducted using Diagnocat, an AI-driven cloud-based platform. Three-dimensional segmentation accuracy was assessed by comparing AI and semi-automatic segmentations through surface-to-surface distance metrics in Cloud Compare software. Statistical analyses included the intraclass correlation coefficient (ICC) for inter- and intra-rater reliability, Kruskal-Wallis tests for group comparisons, and Mann-Whitney U tests for post-hoc analyses.
Results:
The median deviation between AI and semi-automatic MC segmentation was 0.29 mm (SD: 0.25-0.37 mm), with 88% of cases within the clinically acceptable limit (≤ 0.50 mm). Inter-rater reliability for semi-automatic segmentation was 84.5%, while intra-rater reliability reached 95.5%. AI segmentation demonstrated the highest accuracy in scans without third molars (median deviation: 0.27 mm), followed by erupted third molars (0.28 mm) and impacted third molars (0.32 mm).
Conclusions:
AI demonstrated high accuracy in MC segmentation, closely matching expert-guided semi-automatic segmentation. However, segmentation errors were more frequent in cases with impacted third molars, probably due to anatomical complexity. Further optimisation of AI models using diverse training datasets and multi-centre validation is recommended to enhance reliability in complex cases.
REFERENCES (35)
1.
Carter JB, Stone JD, Clark RS, Mercer JE. Applications of cone-beam computed tomography in oral and maxillofacial surgery: an overview of published indications and clinical usage in United States academic centers and oral and maxillofacial surgery practices. J Oral Maxillofac Surg 2016; 74: 668-679.
2.
Schulze RKW, Drage NA. Cone-beam computed tomography and its applications in dental and maxillofacial radiology. Clin Radiol 2020; 75: 647-657.
3.
Kaasalainen T, Ekholm M, Siiskonen T, Kortesniemi M. Dental cone beam CT: an updated review. Phys Med 2021; 88: 193-217.
4.
Agbaje JO, de Casteele EV, Salem AS, Anumendem D, Lambrichts I, Politis C. Tracking of the inferior alveolar nerve: its implication in surgical planning. Clin Oral Investig 2017; 21: 2213-2220.
5.
Shankland WE 2nd. The trigeminal nerve. Part IV: the mandibular division. Cranio 2001; 19: 153-161.
6.
Jacobs R, Quirynen M, Bornstein MM. Neurovascular disturbances after implant surgery. Periodontol 2000 2014; 66: 188-202.
7.
Sarikov R, Juodzbalys G. Inferior alveolar nerve injury after mandibular third molar extraction: a literature review. J Oral Maxillofac Res 2014; 5: e1. DOI: 10.5037/jomr.2014.5401.
8.
Li Y, Ling Z, Zhang H, Xie H, Zhang P, Jiang H, Fu Y. Association of the inferior alveolar nerve position and nerve injury: a systematic review and meta-analysis. Healthcare (Basel) 2022; 10: 1782. DOI: 10.3390/healthcare10091782.
9.
Poort LJ, van Neck JW, van der Wal KG. Sensory testing of inferior alveolar nerve injuries: a review of methods used in prospective studies. J Oral Maxillofac Surg 2009; 67: 292-300.
10.
Li Y, Ling Z, Zhang H, Xie H, Zhang P, Jiang H, Fu Y. Association of the inferior alveolar nerve position and nerve injury: a systematic review and meta-analysis. Healthcare (Basel) 2022; 10: 1782. DOI: 10.3390/healthcare10091782.
11.
organ N, Meeus J, Shujaat S, Cortellini S, Bornstein MM, Jacobs R. CBCT for diagnostics, treatment planning and monitoring of sinus floor elevation procedures. Diagnostics (Basel) 2023; 13: 1684. DOI: 10.3390/diagnostics13101684.
12.
Xiang B, Lu J, Yu J. Evaluating tooth segmentation accuracy and time efficiency in CBCT images using artificial intelligence: a systematic review and meta-analysis. J Dent 2024; 146: 105064. DOI: 10.1016/j.jdent.2024.105064.
13.
Zheng Q, Gao Y, Zhou M, Li H, Lin J, Zhang W, Chen X. Semi or fully automatic tooth segmentation in CBCT images: a review. PeerJ Comput Sci 2024; 10: e1994. DOI: 10.7717/peerj-cs.1994.
14.
Najjar R. Redefining radiology: a review of artificial intelligence integration in medical imaging. Diagnostics (Basel) 2023; 13: 2760. DOI: 10.3390/diagnostics13172760.
15.
Waller J, O’Connor A, Rafaat E, Amireh A, Dempsey J, Martin C, Umair M. Applications and challenges of artificial intelligence in diagnostic and interventional radiology. Pol J Radiol 2022; 87: e113-e117. DOI: 10.5114/pjr.2022.113531.
16.
Abesi F, Jamali AS, Zamani M. Accuracy of artificial intelligence in the detection and segmentation of oral and maxillofacial structures using cone-beam computed tomography images: a systematic review and meta-analysis. Pol J Radiol 2023; 88: e256-e263. DOI: 10.5114/pjr.2023.127624.
17.
Naufal MF, Fatichah C, Astuti ER, Putra RH. Deep learning for mandibular canal segmentation in digital dental radiographs: a systematic literature review. IEEE Access 2024; 12: 76794-76815. DOI: 10.1109/ACCESS.2024.3406342.
18.
Issa J, Olszewski R, Dyszkiewicz-Konwińska M. The effectiveness of semi-automated and fully automatic segmentation for inferior alveolar canal localization on CBCT scans: a systematic review. Int J Environ Res Public Health 2022; 19: 560. DOI: 10.3390/ijerph19010560.
19.
Assiri HA, Hameed MS, Alqarni A, Dawasaz AA, Arem SA, Assiri KI. Artificial intelligence application in a case of mandibular third molar impaction: a systematic review of the literature. J Clin Med 2024; 13: 4431. DOI: 10.3390/jcm13154431.
20.
Issa J, Riad A, Olszewski R, Dyszkiewicz-Konwińska M. The influence of slice thickness, sharpness, and contrast adjustments on inferior alveolar canal segmentation on cone-beam computed tomography scans: a retrospective study. J Pers Med 2023; 13: 1518. DOI: 10.3390/jpm13101518.
21.
Issa J, Kulczyk T, Rychlik M, Czajka-Jakubowska A, Olszewski R, Dyszkiewicz-Konwińska M. Artificial intelligence versus semi-automatic segmentation of the inferior alveolar canal on cone-beam computed tomography scans: a pilot study. Dent Med Probl 2024; 61: 893-899. DOI: 10.17219/dmp/175968.
22.
Büttner M, Rokhshad R, Brinz J, et al. Core outcome measures in dental computer vision studies (DentalCOMS). J Dent 2024;150: 105318. DOI: 10.1016/j.jdent.2024.105318.
23.
Fenster A, Chiu B. Evaluation of segmentation algorithms for medical imaging. Conf Proc IEEE Eng Med Biol Soc 2005; 7186-7189. DOI: 10.1109/IEMBS.2005.1616166.
24.
Taha AA, Hanbury A. Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool. BMC Med Imaging 2015; 15: 29. DOI: 10.1186/s12880-015-0068-x.
25.
Brock KK, Mutic S, McNutt TR, Li H, Kessler ML. Use of image registration and fusion algorithms and techniques in radiotherapy: report of the AAPM radiation therapy committee task group no. 132. Med Phys 2017; 44: e43-e76. DOI: 10.1002/mp.12256.
26.
Jaskari J, Sahlsten J, Järnstedt J, et al. Deep learning method for mandibular canal segmentation in dental cone beam computed tomography volumes. Sci Rep 2020; 10: 5842. DOI: 10.1038/s41598-020-62321-3.
27.
Järnstedt J, Sahlsten J, Jaskari J, et al. Comparison of deep learning segmentation and multigrader-annotated mandibular canals of multicenter CBCT scans. Sci Rep 2022; 12: 18598. DOI: 10.1038/s41598-022-20605-w.
28.
Lysenko AV, Yaremenko AI, Ivanov VM, et al. Comparison of dental implant placement accuracy using a static surgical guide, a virtual guide and a manual placement method – an in-vitro study. Ann Maxillofac Surg 2023; 13: 158-162. DOI: 10.4103/ams.ams_100_23.
29.
Tohka J. Partial volume effect modeling for segmentation and tissue classification of brain magnetic resonance images: a review. World J Radiol 2014; 6: 855-864. DOI: 10.4329/wjr.v6.i11.855.
30.
Juneja M, Aggarwal N, Saini S, et al. A comprehensive review on artificial intelligence-driven preprocessing, segmentation, and classification techniques for precision furcation analysis in radiographic images. Multimed Tools Appl 2024. DOI: 10.1007/s11042-024-19920-3.
31.
Orhan K, Bilgir E, Bayrakdar IS, Ezhov M, Gusarev M, Shumilov E. Evaluation of artificial intelligence for detecting impacted third molars on cone-beam computed tomography scans. J Stomatol Oral Maxillofac Surg 2021; 122: 333-337. DOI: 10.1016/j.jormas.2020. 12.006.
32.
Kempers S, van Lierop P, Hsu TH, Moin DA, Bergé S, Ghaeminia H, Xi T, Vinayahalingam S. Positional assessment of lower third molar and mandibular canal using explainable artificial intelligence. J Dent 2023; 133: 104519. DOI: 10.1016/j.jdent.2023.104519.
33.
Joo Y, Moon SY, Choi C. Classification of the relationship between mandibular third molar and inferior alveolar nerve based on generated mask images. IEEE Access 2023; 11: 81777-81786. DOI: 10.1109/ACCESS.2023.3302271.
34.
Fukuda M, Ariji Y, Kise Y, Nozawa M, Kuwada C, Funakoshi T, et al. Comparison of 3 deep learning neural networks for classifying the relationship between the mandibular third molar and the mandibular canal on panoramic radiographs. Oral Surg Oral Med Oral Pathol Oral Radiol 2020; 130: 336-343. DOI: 10.1016/j.oooo.2020.04.005.
35.
Kazimierczak W, Kazimierczak N, Kędziora K, Szcześniak M, Serafin Z. Reliability of the AI-assisted assessment of the proximity of the root apices to mandibular canal. J Clin Med 2024; 13: 3605. DOI: 10.3390/jcm13123605.