ORIGINAL PAPER
The utility of ADC measurement techniques for differentiation of low- and high-grade clear cell RCC
 
More details
Hide details
 
Submission date: 2018-01-25
 
 
Final revision date: 2018-03-25
 
 
Acceptance date: 2018-06-20
 
 
Publication date: 2018-09-21
 
 
Pol J Radiol, 2018; 83: 446-451
 
KEYWORDS
TOPICS
ABSTRACT
Purpose:
To evaluate the diffusion properties of clear cell renal cell carcinoma (ccRCC) on magnetic resonance imaging (MRI) concerning their Fuhrman nuclear grades and sizes, and to compare the diagnostic performance of two ROI placement techniques for apparent diffusion coefficient (ADC) measurement (entire mass vs. only the darkest region of the mass).

Material and methods:
Fifty-one ccRCC were enrolled in the study and grouped into low-grade ccRCC (Fuhrman grade 1 and 2, n = 37) and high-grade ccRCC (Fuhrman grade 3 and 4, n = 14). Selective ADC (Sel-ADC) measurement was performed by placing a circular ROI that included the darkest region of the tumour on ADC map images. Extensive ADC (Ext-ADC) measurement was performed by drawing an ROI that covered the entire tumour.

Results:
The Sel-ADC value was lower in high-grade ccRCC (p = 0.019), whereas the Ext-ADC value did not show a statistically significant difference (p = 0.42). Sel-ADC value of a ≤ 1.405 mm2/s has a sensitivity, specificity, positive predictive value, negative predictive value, and accuracy value of 78.6, 72.2, 73.87, 77.13, and 75.4, respectively, to differentiate high-grade from low-grade ccRCC. The size and Fuhrman grade of the ccRCC were inversely correlated with the Sel-ADC value; however, the correlations were weak (r = –0.322, p = 0.021 and r = –0.376, p = 0.006, respectively). There was no difference between ADC values of small (≤ 4 cm) and large (> 4 cm) ccRCCs.

Conclusions:
The ADC value of the darkest region in solid part of the ccRCC may play a role in predicting the nuclear grade of ccRCC.
REFERENCES (13)
1.
Rosenkrantz AB, Niver BE, Fitzgerald EF, et al. Utility of the apparent diffusion coefficient for distinguishing clear cell renal cell carcinoma of low and high nuclear grade. AJR Am J Roentgenol 2010; 195: W344-351.
 
2.
Fuhrman SA, Lasky LC, Limas C. Prognostic significance of morphologic parameters in renal cell carcinoma. Am J Surg Pathol 1982; 6: 655-663.
 
3.
http://www.auanet.org/guidelin...- (2017). (Accessed December 5th, 2017).
 
4.
Maruyama M, Yoshizako T, Uchida K, et al. Comparison of utility of tumor size and apparent diffusion coefficient for differentiation of low- and high-grade clear-cell renal cell carcinoma. Acta Radiol 2015; 56: 250-256.
 
5.
Goyal A, Sharma R, Bhalla AS, et al. Diffusion-weighted MRI in renal cell carcinoma: a surrogate marker for predicting nuclear grade and histological subtype. Acta Radiol 2012; 53: 349-358.
 
6.
Zhang YD, Wu CJ, Wang Q, et al. Comparison of utility of histogram apparent diffusion coefficient and R2* for differentiation of low-grade from high-grade clear cell renal cell carcinoma. AJR Am J Roentgenol 2015; 205: W193-201.
 
7.
López-Costea MÁ, Bonet X, Pérez-Reggeti J, et al. Oncological outcomes and prognostic factors after nephron-sparing surgery in renal cell carcinoma. Int Urol Nephrol 2016; 48: 681-686.
 
8.
Yu X, Lin M, Ouyang H, et al. Application of ADC measurement in characterization of renal cell carcinomas with different pathological types and grades by 3.0T diffusion-weighted MRI. Eur J Radiol 2012; 81: 3061-3066.
 
9.
Reuter VE. The pathology of renal epithelial neoplasms. Semin Oncol 2006; 33: 534-543.
 
10.
Wang H, Cheng L, Zhang X, et al. Renal cell carcinoma: diffusion-weighted MR imaging for subtype differentiation at 3.0 T. Radiology 2010; 257: 135-143.
 
11.
Rothman J, Egleston B, Wong YN, et al. Histopathological characteristics of localized renal cell carcinoma correlate with tumor size: a SEER analysis. J Urol 2009; 181: 29-33; discussion 33-34.
 
12.
Zhang C, Li X, Hao H, et al. The correlation between size of renal cell carcinoma and its histopathological characteristics: a single center study of 1867 renal cell carcinoma cases. BJU Int 2012; 110 Pt B: E481-485.
 
13.
Zhang HM, Wu YH, Gan Q, et al. Diagnostic utility of diffusion-weighted magnetic resonance imaging in differentiating small solid renal tumors (≤ 4 cm) at 3.0T magnetic resonance imaging. Chin Med J (Engl) 2015; 128: 1444-1449.
 
Journals System - logo
Scroll to top