MUSCULOSKELETAL RADIOLOGY / ORIGINAL PAPER
 
KEYWORDS
TOPICS
ABSTRACT
Purpose:
To determine the feasibility of meniscal imaging using virtual monochromatic images obtained through dual-energy computed tomography (DECT) technique, and to determine which keV levels optimise contrast resolution.

Material and methods:
All DECT exams were performed on a Discovery CT750 HD system from GE Healthcare. Virtual monochromatic images were reconstructed at 40 keV, 73 keV, 106 keV, and 139 keV. Contrast resolution of the medial and lateral menisci using a 5-point Likert scale at each keV level was determined through a consensus agreement by 2 fellowship-trained musculoskeletal radiologists. Friedman’s and Wilcoxon signed rank tests were used to compare visualisation scores across different keV levels.

Results:
Seventeen knee exams from 10 patients met criteria for inclusion in the study. All patients included in the study cohort were male. The median age of patients was 46 years (interquartile range, 35-53 years). Virtual monochromatic images at 40 keV demonstrated highest contrast resolution of the menisci, with a statistically significant difference between contrast resolution scores at 40 keV and 76 keV, Friedman test: p < 0.0001.

Conclusions:
Meniscal imaging is feasible using DECT virtual monochromatic images at low keV levels. Improved contrast resolution at these specified KeV values could pave the way for further research in this field to determine its role in the future as an alternative option for assessment of the menisci in patients with contraindications to MRI or in the setting of a periarticular ferromagnetic foreign body obscuring the field of view.

 
REFERENCES (25)
1.
Crawford R, Walley G, Bridgman S, Maffulli N. Magnetic resonance imaging versus arthroscopy in the diagnosis of knee pathology, concentrating on meniscal lesions and ACL tears: a systematic review. Br Med Bull 2007; 84: 5-23.
 
2.
Bui-Mansfield L, Youngberg RA, Warme W, Pitcher JD, Nguyen PL. Potential cost savings of MR imaging obtained before arthroscopy of the knee: evaluation of 50 consecutive patients. Am J Roentgenol 1997; 168: 913-918.
 
3.
Buckwalter KA. CT arthrography. Clin Sports Med 2006; 25: 899-915.
 
4.
Hickle J, Walstra F, Duggan P, Ouellette H, Munk P, Mallinson P. Dual-energy CT characterization of winter sports injuries. Br J Radiol 2020; 93: 3-6.
 
5.
Mallinson P, Antoniades G, McLaughlin P, Louis L, Nicolaou S, Munk P, et al. Dual-energy computed tomographic tendon algorithm in acute trauma: Initial experiences. J Comput Assist Tomogr 2014; 38: 348-351.
 
6.
Peltola EK, Koskinen SK. Dual-energy computed tomography of cruciate ligament injuries in acute knee trauma. Skeletal Radiol 2015; 44: 1291301. DOI: 10.1007/s00256-015-2173-x.
 
7.
Mallinson PI, Coupal TM, McLaughlin PD, Nicolaou S, Munk PL, Ouellette HA. Dual-energy CT for the musculoskeletal system. Radio­logy 2016; 281: 690-707.
 
8.
Rajiah P, Sundaram M, Subhas N. Dual-energy CT in musculoskele­tal imaging: what is the role beyond gout? Am J Roentgenol 2019; 213: 493-505.
 
9.
Fickert S, Niks M, Dinter DJ, Hammer M, Weckbach S, Schoenberg SO, et al. Assessment of the diagnostic value of dual-energy CT and MRI in the detection of iatrogenically induced injuries of anterior cruciate ligament in a porcine model. Skeletal Radiol 2013; 42: 411-417.
 
10.
Glazebrook KN, Brewerton LJ, Leng S, Carter RE, Rhee PC, Murthy NS, et al. Case-control study to estimate the performance of dual-energy computed tomography for anterior cruciate ligament tears in patients with history of knee trauma. Skeletal Radiol 2014; 43: 297-305.
 
11.
Sun C, Miao F, Wang XM, Wang T, Ma R, Wang DP, et al. An initial qualitative study of dual-energy CT in the knee ligaments. Surg Radiol Anat 2008; 30: 443-447.
 
12.
Slavic S, Madhav P, Profio M, Crotty D, Nett E, Hsieh J, et al. GSI Xtream on Revolution CT. GE Healthcare, Waukesha, USA, 2017.
 
13.
Morin R, Mahesh M. Contrast resolution role in medical imaging. J Am Coll Radiol 2018; 15: 1002-1003.
 
14.
Guermazi A, Jarraya M, Lynch JA, Felson DT, Clancy M, Nevitt M, et al. Reliability of a new scoring system for intraarticular mineralization of the knee: Boston University Calcium Knee Score (BUCKS). Osteoarthritis Cartilage 2020; 28: 802-810.
 
15.
Artmann A, Ratzenböck M, Noszian I, Trieb K. Dual energy CT – a new perspective in the diagnosis of gout. Rofo 2010; 182: 261-266 [Article in German].
 
16.
Deng K, Li W, Wang JJ, Wang GL, Shi H, Zhang CQ. The pilot study of dual-energy CT gemstone spectral imaging on the image quality of hand tendons. Clin Imaging 2013; 37: 930-933.
 
17.
Simonetti I, Verde F, Palumbo L, Di Pietto F, Puglia M, Scaglione M, et al. Dual energy computed tomography evaluation of skeletal traumas. Eur J Radiol 2021; 134: 109456. DOI: 10.1016/j.ejrad.2020.109456.
 
18.
Bai R, Li X, Li R, He X, Wen Z. Optimization of low-dose scan parameters in dual-energy computed tomography for displaying the anterior cruciate ligament. J Int Med Res 2020; 48: 300060520927874. DOI: 10.1177/0300060520927874.
 
19.
Du YM, Yang QF, Shen WT, Huang HM. Development of a dual-energy computed tomography-based segmentation method for collateral ligaments: a porcine knee model. J Med Biol Eng 2019; 39: 96-101.
 
20.
Jeon JY, Lee SW, Jeong YM, Yu S. The utility of dual-energy CT collagen material decomposition technique for the visualization of tendon grafts after knee ligament reconstruction. Eur J Radiol 2019; 116: 225-230.
 
21.
Shim E, Kim BH, Kang WY, Hong SJ, Kang CH, Ahn KS, et al. Diagnostic performance of electron-density dual-energy CT in detection of cervical disc herniation in comparison with standard gray-scale CT and virtual non-calcium images. Eur Radiol 2022; 32: 2209-2220.
 
22.
Abbassi M, Jain A, Shin D, Arasa CA, Li B, Anderson SW, et al. Quantification of bone marrow edema using dual-energy CT at fracture sites in trauma. Emerg Radiol 2022; 29: 691-696.
 
23.
Wait JM, Cody D, Jones AK, Rong J, Baladandayuthapani V, Kappadath SC. Performance evaluation of material decomposition with rapid-kilovoltage-switching dual-energy CT and implications for assessing bone mineral density. AJR Am J Roentgenol 2015; 204: 1234-1241.
 
24.
Chiro GD, Brooks RA, Kessler RM, Johnston GS, Jones AE, Herdt JR, et al. Tissue signatures with dual-energy computed tomography. Radiology 1979; 131: 521-523.
 
25.
Millner MR, McDavid WD, Waggener RG, Dennis MJ, Payne WH, Sank VJ. Extraction of information from CT scans at different energies. Med Phys 1979; 6: 70-71.
 
Journals System - logo
Scroll to top