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Abstract
Purpose: To verify whether deep learning can be used to differentiate between carcinosarcomas (CSs) and endometrial 
carcinomas (ECs) using several magnetic resonance imaging (MRI) sequences.

Material and methods: This retrospective study included 52 patients with CS and 279 patients with EC. A deep-learning model 
that uses convolutional neural networks (CNN) was trained with 572 T2-weighted images (T2WI) from 42 patients, 488 
apparent diffusion coefficient of water maps from 33 patients, and 539 fat-saturated contrast-enhanced T1-weighted images 
from 40 patients with CS, as well as 1612 images from 223 patients with EC for each sequence. These were tested with 9-10 
images of 9-10 patients with CS and 56 images of 56 patients with EC for each sequence, respectively. Three experienced 
radiologists independently interpreted these test images. The sensitivity, specificity, accuracy, and area under the receiver 
operating characteristic curve (AUC) for each sequence were compared between the CNN models and the radiologists.

Results: The CNN model of each sequence had sensitivity 0.89-0.93, specificity 0.44-0.70, accuracy 0.83-0.89, and AUC 
0.80-0.94. It also showed an equivalent or better diagnostic performance than the 3 readers (sensitivity 0.43-0.91, specificity 
0.30-0.78, accuracy 0.45-0.88, and AUC 0.49-0.92). The CNN model displayed the highest diagnostic performance on 
T2WI (sensitivity 0.93, specificity 0.70, accuracy 0.89, and AUC 0.94).

Conclusions: Deep learning provided diagnostic performance comparable to or better than experienced radiologists when 
distinguishing between CS and EC on MRI.
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Introduction
Uterine carcinosarcoma (CS) is a rare, biphasic tumour 
composed of high-grade carcinoma and sarcoma compo-
nents, which account for less than 5% of all uterine tumours, 
while endometrial carcinoma (EC) represents approximately 
95% of uterine tumours. The carcinomatous component is 
most often high-grade endometrioid or serous carcinomas, 
and uncommonly clear cell carcinoma [1]. 

The mesenchymal component is most commonly high-
grade sarcoma not otherwise specified, but heterologous  

elements include rhabdomyosarcoma, chondrosarcoma, 
and osteosarcoma [1].  CS shows highly aggressive behav-
iour; at presentation, approximately 60% of patients with 
CS have advanced disease with extrauterine spread [2]. 
The prognosis of CS is also poor, with an overall 5-year 
survival rate of approximately 30% (stage I- II: 59%;  
stage III: 25%; stage IV: 9%) [3,4], in contrast to 90%  
in low-grade EC [5] and over 80% in stage I high grade 
EC [6]. Serous histology and heterologous rhabdomyo-
blastic differentiation have been reported to be signifi-
cantly associated with worse survival [1]. 
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Because of sampling and biopsy errors due to the 
fact that carcinosarcoma contains various components,  
the preoperative radiologic diagnosis of CS is clinically 
important. This diagnosis guides optimal surgical plan-
ning and adjuvant therapy, including novel targeted 
immunotherapy [7]. According to previous studies in-
vestigating MRI findings of uterine CS, large exophytic 
(12-75%), heterogeneous endometrial masses both on 
T2-weighted imaging (T2WI)  71-82%) and T1-weighted 
imaging (T1WI) (18-50%) have been reported to be sug-
gestive of CS [8-10]. In dynamic studies, CSs typically 
show areas of early and persistent marked enhancement 
(50-100%) [8-10]. However, despite significant differences 
in prognosis between CS and EC, MRI findings of CS are 
far from sufficient to distinguish them from EC, including 
the report by Bharwani et al. showing that 88% of CS were 
indistinguishable from EC [8].  

Convolutional neural network (CNN) is a class of deep 
learning models that combine imaging filters with artifi-
cial neural networks through a series of successive linear 
and nonlinear layers. It is considered a promising tool for  
diagnostic imaging, and several CNN models for diagnos-
tic imaging have been constructed [11-14]. The modalities 
studied include radiography, US, CT, and MRI. However, 
to the best of our knowledge, no study has built a deep 
learning model for diagnosing CSs using MRI; therefore, 
its clinical usefulness requires validation.

Here, we present CNN models for differentiating CSs 
from ECs on MRI, including T2WI, apparent diffusion 
coefficient of water (ADC) map, and contrast enhanced-
T1WI (CE-T1WI), and compare their diagnostic perfor-
mance with interpretations by experienced radiologists. 

Material and methods

Patients 

This retrospective study was approved by the institutional 
review board of University of Tsukuba Hospital, and the 

requirement for written informed consent was waived 
(Approval number: R02-054). 

The inclusion criteria for the CS group were as fol-
lows: (a) pathologically proven CS by total hysterectomy 
and (b) a pelvic MRI in the oblique axial direction per-
pendicular to the long axis of the uterine body, per-
formed at our hospital between January 2005 and De-
cember 2020. Note: Because CS is a rare tumour, cases 
of CS without diffusion-weighted imaging (DWI) or 
CE-T1WI were included. The inclusion criteria for the 
EC group were as follows: (a) pathologically proven EC 
by total hysterectomy and (b) a pelvic MRI including 
T2WI, DWI, and CE-T1WI in the oblique axial direc-
tion perpendicular to the long axis of the uterine body, 
performed at our hospital between January 2015 and 
December 2020. The exclusion criteria were as follows:  
(a) history of surgery other than caesarean section, che-
motherapy, or radiation therapy of the uterus and (b) con-
comitant pregnancy. A flowchart for the patient selection 
process is shown in Figure 1. 

MRI was performed using 3 T or 1.5 T equipment 
(Ingenia®, and Achieva®; Philips Medical Systems, Amster-
dam, Netherlands). The imaging protocols for CS and EC 
are the same and included oblique axial T2WI, DWI with 
a b value of 0, 1000, and CE-T1WI with gadopentetate 
dimeglumine 5 mmol (Magnevist® or Gadovist®; Bayer, 
Wuppertal, Germany). The bolus intravenous contrast 
injection rate was 4 ml (2 mmol)/s (in case of Gadovist, 
diluted with saline solution and injected at 4 ml/s). Fur-
ther details of these parameters are provided in Table 1. 

Dataset 

In order to detect the most suitable sequence for CNN to 
differentiate CS from EC, each sequence alone was tar-
geted for this verification.

To create a dataset, only the slices in which the tumour 
was visualised were extracted based on the consensus of the 
2 radiologists (T.S., A.U.) with reference to the pathology 

Figure 1. Flowchart for the patient selection process

Women with pathologically confirrned carcinosarcoma under-
went pelvic MRI at our hospital  

between January 2005 to December 2020 

223 for tram

279 with endometrioid carcinoma

64 women that do not include  
all sequences evaluated in this study

11 women with history of surgety other than 
Caesarean section, chemotherapy, or radiation 
therapy of the uterus, concomitant pregnancy

42 for tram

33 for tram

40 for tram 56 for test

10 for test

9 for test

10 for test

C E-T1WI = 50 

354 women with pathologically confirmed endometrial 
carcinoma underwent pelvic MRI at our hospital  

between January 2015 to December 2020

T2WI = 52 ADC map = 42

52 with carcinosarcoma
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report. The same cross-section was extracted for all the se-
quences. A total of 331 patients were randomly assigned to 
the training and testing groups with the same ratio of CS to 
EC and a training-to-test ratio of approximately 5 : 1.

In the training phase of the CS group, 572 images of 
T2WI from 42 patients, 488 images of ADC map from 33 
patients, and 539 images of CE-T1WI from 40 patients 
were used. In the training phase of the EC group, 1621 
images of each sequence from 223 patients were used. 

In the test phase, only 1 central image of the stacks was 
automatically extracted for each patient, and 66 images 
(10 images from 10 patients with CS and 56 images of 56 
patients with EC) were used on T2WI and CE-T1WI, and 
65 images (9 images from 9 patients with CS and 56 imag-
es from 56 patients with EC) were used on the ADC map. 

In this study, the device used was unable to handle Digi-
tal Imaging and Communications in Medicine (DICOM)  
images, so the DICOM images were converted to Joint 
Photographic Experts Group (JPEG) images using 
the viewing software Centricity Universal Viewer (GE 
Healthcare, Chicago, IL, USA). Subsequently, the margins 
containing the patient information were automatically 
cropped and resized to 240 × 240 pixels using XnConvert 
(Gougelet Pierre-Emmanuel, Reims, France). 

Deep learning with convolutional neural networks

Deep learning was performed on a deep station entry 
(UEI, Tokyo, Japan) with a GeForce RTX 2080Ti graphics 
processing unit (NVIDIA, Delaware, CA, USA), a Core  
i7-8700 central processing unit (Intel, Santa Clara, CA, 
USA), and deep-learning software Deep Analyzer (GHELIA, 
Tokyo, Japan) [15,16]. 

The conditions optimized based on the ablation and 
comparative studies of the previous research are as fol-
lows: CNN with Xception architecture [17] was used for 
deep learning. Xception is a novel architecture that has 
a similar parameter count as Inception V3, and inception 
modules have been replaced with depthwise separable 
convolutions. Therefore, the performance gains are not 
due to increased capacity but rather to more efficient use 
of model parameters. ImageNet [18] was used for pre-

training. Optimiser algorithm = Adam (learning rate = 
0.0001, β1 = 0.9, β2 = 0.999, eps = le-7, decay = 0, AMS-
Grad = false). The batch size was automatically selected 
by the Deep Analyzer to fit into the graphics processing 
unit (GPU) memory. Additionally, the horizontal flip, ro-
tation (±4.5°), shearing (0.05), and zooming (0.05) were 
also automatically used as data augmentation techniques. 
The numbers of epochs used for the training were 50, 100, 
and 200. The validation/training ratio (validation ratio) 
was set at 0.1 or 0.2.

Radiologist interpretation

Three experienced radiologists (K.M., S.H., and M.S.) with 
26, 12, and 8 years of experience in interpreting pelvic MRI 
independently reviewed the test images in a random order. 
Each image was evaluated by assigning confidence levels in 
the differentiation of CS and EC using a 6-point scale (0, 
definitely CS; 0.2, probably CS; 0.4, possibly CS; 0.6, possi-
bly EC; 0.8, probably EC; and 1.0, definitely EC). They were 
blinded to pathological and clinical findings. A duration of 
a week or more was observed between each sequence in-
terpretation. Prior to interpretation, several cases of CS and 
EC were presented, and the typical imaging findings of CS 
(large exophytic, heterogeneous endometrial masses with 
marked enhancement) were reconfirmed.

Statistical analysis

The age and tumour stage for each group were compared 
using the Mann-Whitney U test and c2 test. 

The test dataset was used to calculate the sensitivity, 
specificity, and accuracy of the CS diagnoses. In radiolo-
gists, a value of 0-0.4 was treated as CS and 0.6-1.0 was 
treated as EC. In CNN, the classification into CS and 
EC groups was by output as a continuous number from  
0 to 1, where 0-0.49 was considered as CS and 0.50-1.00 
was considered as EC. Receiver operating characteristic 
(ROC) analysis was performed to assess the diagnostic 
performance [19]. For statistics, 95% confidence inter-
vals (CIs) and significance difference were estimated.  
In addition, the inter-observer agreement for the 2 choic-

Table 1. Magnetic resonance imaging acquisition parameters

Scanner Sequence Type TR/TE (ms) FA (degree) Slice/Gap (mm) FOV (mm) Matrix

Ingenia® 3.0T T2WI 2D-TSE 4955-6752/100-110 90 3-5/0.3-0.5 280 704 × 704

DWI EPI 6500-7500/77-79 90 3-5/0.3-0.5 280 224 × 224

CE-T1WI 3D-GRE SPIR 4/2 10 3.3/1.6 280 576 × 576

Achiva® 1.5T T2WI 2D-TSE 1400-6013/100-110 90 3-5/0.3-0.5 280 512 × 512-704 × 704

DWI EPI 3963-7500/70-78 90 3-5/0.3-0.5 280 224 × 224-256 × 256

CE-T1WI 3D-GRE SPIR 5/2 15 2/1 280 320 × 320-576 × 576
CE-T1WI – contrast-enhanced fat-saturated T1-weighted imaging, DWI – diffusion-weighted imaging, EPI – echo planar imaging, FA – flip angle, FOV – field of view, GRE SPIR – gradient echo 
spectral pre-saturation with inversion recovery, T2WI – T2-weighted imaging, TE – echo time, TR – repetition time, TSE – turbo-spin echo
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es of CS or EC was assessed using kappa (κ) statistics.  
The κ-statistic interpreted the agreement as follows:  
less than 0, no; 0-0.20, slight; 0.21-0.40, fair; 0.41-0.60, 
moderate; 0.61-0.80, substantial; and 0.81-1.00, almost 
perfect [20]. 

All statistical analyses were performed using SPSS 
software (SPSS Statistics 27.0; IBM, New York, NY, USA). 
The statistical significance was set at p < 0.05.

Results
A total of 331 women (mean age 59 years; age range 
30-91 years) were evaluated across the datasets. Table 2 
shows the patients’ characteristics, clinical stages, and im-
age slices of CS and EC lesions. There was no significant 
difference between the CS and EC groups and training 
and testing data regarding patient age and tumour stage. 
In the CS group, 7 (train 5, test 2) patients were scanned 
at 1.5 T. In the EC group, 13 (train 10, test 3) patients were 
scanned at 1.5 T. The other patients were scanned at 3 T.

For the selection of the validation ratio and epochs 
among the models, a model with a validation ratio of 0.2 
and 100 epochs was adopted for T2WI (Figure 2), a model 
with a validation ratio of 0.1 and 100 epochs was adopted 
for the ADC map, while a model with a validation ratio of 
0.2 and 200 epochs was adopted for CE-T1WI, owing to 
their high diagnostic performance.

Table 3 presents the results of the interpretation. Table 4 
lists the diagnostic performances of the CNN models and 
the 3 radiologists in diagnosing CS. The ROC curves com-
paring the performance of the CNN models and the radi-
ologists are shown in Figure 3; the sensitivity, specificity, 
accuracy, and AUC of the CNN model of each sequence 
in diagnosing CS were comparable to those of Reader 1 
and superior to those of the other 2 readers. The CNN 
models and Reader 1 were able to differentiate between 
CS and EC, with significant differences in all sequences. 
And the AUC was significantly higher on T2WI and 
CE-T1WI for the CNN model than for Readers 2 and 3.  
The CNN model showed the highest diagnostic perfor-

Table 2. Characteristics of patients and lesions

Parameter Training data Test data

CS EC All CS EC All

Patients, n 42 223 265 10 56 66

Age, years

Mean (SD) 66 (11.60) 53 (11.23) 59 (12.13) 65 (8.34) 60 (14.00) 61 (13.44)

Range 39-86 30-71 30-86 50-75 31-91 31-91

Pathological type, n

CS

     Homologous differentiation 17 3

     Heterologous differentiation 22 5

     N/A 3 2

EC

     Endometrioid carcinoma Grade 1 129 33

     Endometrioid carcinoma Grade 2 55 12

     Endometrioid carcinoma Grade 3 21 10

     Other 18 1

Clinical stage, n

I 15 138 5 40

II 4 26 0 4

III 12 38 0 6

IV 11 21 5 6

Images, n/slices

T2WI 42/572 223/1,612 265/2,184 10/10 56/56 66/66

ADC map 33/488 223/1,612 256/2,100 9/9 56/56 65/65

CE-T1WI 40/539 223/1,612 263/2,151 10/10 56/56 66/66
ADC – apparent diffusion coefficient, CE-T1WI – contrast-enhanced fat-saturated T1-weighted imaging, CS – carcinosarcoma, EC – endometrial carcinoma, SD – standard deviation,  
T2WI – T2-weighted imaging 
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mance on the T2WI with an AUC of 0.94 when compar-
ing the sequences and interpreters.

Table 5 shows the inter-observer agreement between the 
CNN models and the 3 radiologists. The CNN model and 
Reader 1 of T2WI and CE-T1WI and Reader 2 and 3 of all 
sequences showed a fair agreement. The other studies showed 
no agreement. 

Figures 4-6 show the test images of this study with inter-
pretations of the CNN model and the radiologists, including 
the confidence of the CNN model and the radiologists. Figure 
4 is a typical CS case, where the CNN model and Reader 1 
diagnosed CS on T2WI. On the other hand, only the CNN 
model could not diagnose CS on the ADC map, and all but 
Reader 2 diagnosed CS on CE-T1WI. Figure 5 presents a case 
of CS of a huge tumour with internal necrosis, where all but 
Reader 2 diagnosed CS on T2WI and ADC map, and only 
the CNN model diagnosed CS on CE-T1WI. Figure 6 shows 
a case of EC with haemorrhage in the endometrial cavity, 
where the CNN model diagnosed EC only on CE-T1WI. 

Validation acc.: 98.6%         Validation loss: 0.0
Training acc.: 100.0%          Training loss: 4.16e-4

Figure 2. Accuracy and loss of the training data (T2-weighted imaging with 
validation ratio 0.2, epochs 100)

Throughput: 126 epochs/hr   

Table 3. Interpretation results of the CNN model and the radiologists

CNN Reader 1 Reader 2 Reader 3

CS EC CS EC CS EC CS EC

T2WI CS 7 3 7 3 3 7 6 4

EC 4 52 9 47 13 43 31 25

ADC map CS 4 5 7 2 3 6 5 4

EC 6 50 7 49 13 43 32 24

CE-T1WI CS 7 3 7 3 3 7 6 4

EC 4 52 5 51 13 43 31 25
ADC – apparent diffusion coefficient, CE-T1WI – contrast-enhanced fat-saturated T1-weighted imaging, CNN – convolutional neural network, CS – carcinosarcoma, EC – endometrial carcinoma, 
T2WI – T2-weighted imaging 

Table 4. Sensitivity, specificity, and AUC of the CNN model and the radiologists in diagnosing CS

Image 
set

Interpreter Sensitivity Specificity Accuracy AUC p-value for AUC 
(vs. CNN model) 

T2WI CNN 0.93 (0.88-0.96) 0.70 (0.44-0.87) 0.89 (0.88-0.96) 0.94 (0.88-1.00) –

Reader 1 0.84 (0.79-0.87) 0.70 (0.43-0.88) 0.81 (0.74-0.87) 0.86 (0.73-0.99) 0.101

Reader 2 0.77 (0.73-0.82) 0.30 (0.11-0.57) 0.70 (0.64-0.78) 0.52 (0.32-0.72) 0.001*

Reader 3 0.45 (0.40-0.49) 0.60 (0.33-0.82) 0.47 (0.39-0.54) 0.52 (0.33-0.70) 0.001*

ADC map CNN 0.89 (0.85-0.93) 0.44 (0.21-0.69) 0.83 (0.76-0.90) 0.80 (0.65-0.95) –

Reader 1 0.88 (0.83-0.90) 0.78 (0.49-0.93) 0.86 (0.83-0.90) 0.91 (0.83-0.98) 0.225

Reader 2 0.77 (0.74-0.81) 0.33 (0.13-0.62) 0.71 (0.65-0.79) 0.53 (0.31-0.74) 0.063

Reader 3 0.43 (0.38-0.47) 0.56 (0.28-0.80) 0.45 (0.38-0.47) 0.49 (0.26-0.72) 0.051

CE-T1WI CNN 0.93 (0.88-0.96) 0.70 (0.44-0.87) 0.89 (0.82-0.95) 0.89 (0.77-1.00) –

Reader 1 0.91 (0.86-0.94) 0.70 (0.44-0.88) 0.88 (0.80-0.93) 0.92 (0.85-0.99) 0.532

Reader 2 0.77 (0.73-0.82) 0.30 (0.11-0.57) 0.70 (0.64-0.78) 0.56 (0.38-0.75) 0.001*

Reader 3 0.45 (0.40-0.49) 0.60 (0.33-0.82) 0.47 (0.39-0.54) 0.55 (0.38-0.73) 0.001*
ADC – apparent diffusion coefficient, AUC – area under the receiver operating characteristic curve, CE-T1WI – contrast-enhanced fat-saturated T1-weighted imaging, CI – confidence interval, 
CNN – convolutional neural network, T2WI – T2-weighted imaging. Data in parentheses are 95% confidence interval. *p < 0.05
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Figure 3. Receiver operating characteristic (ROC) curves for the performance of the convolutional neural network (CNN) model compared to radiologists’ 
performance

T2WI	 ADC map	 CE-T1WI

CNN         Reader 1          Reader 2         Reader 3

Table 5. Inter-observer agreement between the CNN model and the radio
logists

Reader 1 Reader 2 Reader 3

T2WI CNN 0.59 0.25 0.05 

Reader 2 0.16 – –

Reader 3 0.01 0.40 –

ADC map CNN 0.09 0.05 0.07

Reader 2 0.04 – –

Reader 3 0.01 0.40 –

CE-T1WI CNN 0.53 0.03 0.05

Reader 2 0.10 – –

Reader 3 0.13 0.40 –
ADC – apparent diffusion coefficient, CE-T1WI – contrast-enhanced fat-saturated T1-weighted 
imaging, CNN – convolutional neural network, T2WI – T2-weighted imaging 

Figure 4. A 72-year-old woman with carcinosarcoma showing heterologous differentiation of stage IVB. T2WI: the CNN model = CS (confidence;  
CS = 100.0%), Reader 1 = CS (confidence; CS = 100.0%), Reader 2 = EC (confidence; CS = 0.0%), Reader 3 = EC (confidence; CS = 40.0%). ADC map:  
the CNN model = EC (confidence; CS = 0.2%), Reader 1 = CS (confidence; CS = 80.0%), Reader 2 = CS (confidence; CS= 60.0%), Reader 3 = CS (confidence; 
CS = 80.0%). CE-T1WI: the CNN model = CS (confidence; CS = 100.0%), Reader 1 = CS (confidence; CS = 100.0%), Reader 2 = EC (confidence; CS = 20.0%), 
Reader 3 = CS (confidence; CS = 100.0%). The tumour showed relatively heterogeneous hyperintensities both on T2WI and ADC map (arrow heads); addi-
tionally, some parts were strongly enhanced on CE-T1WI (arrow), which were typical appearances of CS. However, it seemed difficult to distinguish it from 
EC associated with endometrial polyp. It may also have been difficult to distinguish from adenomyosis with the ADC map alone

ADC – apparent diffusion coefficient, CE-T1WI – contrast-enhanced fat-saturated T1-weighted imaging, CNN – convolutional neural network, CS – carcinosarcoma, EC – endo-
metrial carcinoma, T2WI – T2-weighted imaging 

Discussion
This study presented CNN models to distinguish between 
CS and EC using several MRI sequences, which demon-
strated almost equal diagnostic performance compared 
to the most experienced radiologist, Reader 1, and better 
diagnostic performance compared to Readers 2 and 3.

Few studies have used deep learning in the field of 
uterine tumour MRI. Urushibara et al. developed a CNN 
that can differentiate between cervical cancer and non-
cancerous lesions on single sagittal T2WI and showed high 
diagnostic performance [16]. A study by Chen et al. [21] 
and Don et al. [22] used T2WI, T2WI, and CE-T1WI, re-
spectively, to evaluate the myometrial infiltration of ECs us-
ing CNN and showed comparable diagnostic performance 
compared to radiologists. To the best of our knowledge, this 
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is the first study on the diagnosis of CS in deep learning 
using MRI.

Large exophytic heterogeneous endometrial masses 
have been reported to be suggestive of CS [23]. Haemor-
rhagic necrosis is often observed in large masses, leading 
to heterogeneity on T2WI and T1WI [8-10].  In dynamic 
studies, CS typically shows areas of early and persistent 
marked enhancement, similar to that of the myometrium, 
and/or a gradual and delayed strong enhancement, con-
trary to EC with consistently poor enhancement [8-10].  

According to previous studies of Bharwani et al. with  
51 CS cases [8], Tanaka et al. with 17 CS cases [9], and  
Ohguri et al. with 4 CS cases [10], large exophytic appear-

ance was seen in 12% [8], 100% [9], and 75% [10], hetero-
geneity on T2WI was seen in 82% [8], 71% [9], and 75% 
[10], heterogeneity on T1WI was seen in 33% [8], 18% [9], 
and 50% [10], heterogeneity on CE-T1WIs was seen in 
58% [8], 50% [9], and 100% [10], and delayed strong en-
hancement was seen in 50% [8], 81% [9], and 100% [10], 
repsectively. Garza et al. generated time-intensity curves 
for tumour and surrounding myometrial regions of inter-
est in 37 patients with CS and 42 patients with EC, mea-
suring the positive enhancement integral (PEI), maximum 
slope of increase (MSI), and signal enhancement ratio 
(SER). The threshold PEI ratio ≥ 0.67 predicted CS with 
76% sensitivity, 84% specificity, and 0.83 AUC, and the 

ADC – apparent diffusion coefficient, CE-T1WI – contrast-enhanced fat-saturated T1-weighted imaging, CNN – convolutional neural network, CS – carcinosarcoma, EC – endo-
metrial carcinoma, T2WI – T2-weighted imaging 

Figure 5. A 74-year-old woman with carcinosarcoma showing heterologous differentiation of stage IVB. T2WI: the CNN model = CS (confidence; CS = 
100.0%), Reader 1 = CS (confidence; CS = 100.0%), Reader 2 = EC (confidence; CS = 40.0%), Reader 3 = CS (confidence; CS = 60.0%). ADC map: the CNN 
model = CS (confidence; CS = 69.8%), Reader 1 = CS (confidence; CS = 100.0%), Reader 2 = EC (confidence; CS = 40.0%), Reader 3 = CS (confidence; CS 
= 100.0%). CE-T1WI: the CNN model = CS (confidence; CS= 100.0%), Reader 1 = EC (confidence; CS = 40.0%), Reader 2 = EC (confidence; CS = 40.0%), 
Reader 3 = EC (confidence; CS = 40.0%). Huge tumour with exophytic growth was accompanied by extensive necrosis and showed heterogeneous signal 
intensities both on T2WI and ADC map (arrow heads). In CE-T1WI, the tumour enhancing effect was poorer than that in the myometrium (arrow), and no 
enhancing effect was observed in the necrotic area. It is presumed that all readers diagnosed EC because the tumour enhancing effect was poor on CE-T1WI

ADC – apparent diffusion coefficient, CE-T1WI – contrast-enhanced fat-saturated T1-weighted imaging, CNN – convolutional neural network, CS – carcinosarcoma, EC – 
endometrial carcinoma, T2WI – T2-weighted imaging 

Figure 6. A 63-year-old woman with endometrioid carcinoma Grade 1 of stage IVB. T2WI: the CNN model = CS (confidence; CS= 100.0%), Reader 1 = CS 
(confidence; CS = 60.0%), Reader 2 = EC (confidence; CS= 0.0%), Reader 3 = CS (confidence; CS = 60.0%). ADC map: the CNN model = CS (confidence; 
CS = 96.6%), Reader 1 = EC (confidence; CS = 40.0%), Reader 2 = EC (confidence; CS = 40.0%), Reader 3 = CS (confidence; CS = 100.0%). CE-T1WI:  
the CNN model = EC (confidence; CS = 0.1%), Reader 1 = CS (confidence; CS = 60.0%), Reader 2 = EC (confidence; CS = 40.0%), Reader 3 = CS (confidence; 
CS = 80.0%). Haemorrhage in the endometrial cavity resulted in heterogeneity (arrow heads), which may have made interpretation difficult. However,  
it may have been possible to make a correct diagnosis because the tumour showed a relatively homogeneous poor enhancement on CE-T1WI (arrow)
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threshold SER ≤ 125 predicted CS with 90% sensitivity, 
50% specificity, and 0.72 AUC; however, tumour MSI did 
not significantly differ between the disease groups [24].  
It has been reported that there was no significant difference 
between the mean and minimum ADC values of CS and 
EC, although the mean ADC of CS was significantly higher 
than that of higher grade (Grade 2 and 3) EC [25], and CS 
demonstrated heterogenous signal intensities on DWI and 
ADC map reflecting complicated tissue components [26]. 
In summary, heterogeneous signal intensities indicating 
haemorrhagic necrosis, and strongly enhanced areas are 
predictors of uterine CSs on MRI [10]. However, the dia
gnostic performance of imaging features is not perfect. 
Especially when the tumour is small or lacks these typical 
diagnostic imaging features, preoperative diagnosis is not 
always possible and there is an oportunity for the use of 
deep learning to assist in interpretation. 

The MRI findings of CS are not sufficient to differen
tiate them from EC. In addition, our CNN models consist-
ed of only 42 CS cases, and although the images used were 
not cropped images of the uterus only, our CNN models 
showed diagnostic performances equivalent to those of 
experienced radiologists. The CNN model showed the 
highest diagnostic performance with T2WI. In contrast, 
the low diagnostic performance on ADC map compared 
to the other sequences was inconsistent with previous re-
ports [27], and it was presumed to result from the rela-
tively small number of training ADC maps. 

The inter-observer agreement between the readers, not 
only between the CNN model and the readers, was gene
rally low. This indicates that the difference in the imaging 
findings between CS and EC was not standardised or gen-
eralised even among experienced radiologists, and CS and 
EC could not be clearly classified.

Our study had several limitations. First, the number 
of CSs was small; however, this was the largest number 
of MRI studies of CSs to date. Second, each sequence was 
evaluated individually, which was quite different from the 
clinical practice wherein all sequences were referenced and 
comprehensively diagnosed. However, our unpublished 
data indicated that this case size could not be expected 
to improve interpretation by using a combined image set. 
Also, unlike radiologists, one of the CNNs’ strengths may 
be the ability to demonstrate high diagnostic performance 
with only one image of one type of sequence. In addition, 
even when diagnosing with combined sequences by CNN, 
weighting each sequence will be required. Third, due to the 

rarity of CS, the period of adoption for CS and EC was dif-
ferent. Even if there is a large amount of data on one side, 
good results cannot be obtained. In addition, the number 
of images of each sequence available in CS was also differ-
ent, which may have affected the results. Finally, we did 
not examine T1WI and dynamic studies, to avoid study 
complexity. Although T1WI is useful for assessing haem-
orrhage, it was not included in this study because the scan 
protocol did not include oblique axial T1WI. Moreover, 
we considered that the same information is included in  
CE-T1WI. Dynamic studies have been reported to help 
distinguish between CS and EC; however, we believe that 
delayed isolation and hyperenhancement in the late con-
trast phase are of utmost importance to distinguish be-
tween the 2, and that dynamic study is not essential.

The following can be considered as future improve-
ments: For rare tumours, such as CS, it is necessary to 
accumulate cases at multiple centres and increase the 
number of images. As mentioned in the study limitations, 
deep-learning models trained using a combination of sev-
eral sequences may show superior diagnostic performance 
to the current models, as reported for the CNN model of 
prostate cancer using fused ADC and T2WI [28]; how-
ever, additional training images may be required to achieve 
a higher diagnostic performance with combination images. 
Evaluating series images as well as learning with DICOM 
data can also improve diagnostic performance, and great-
er versatility can be achieved by using images taken with 
other MRI instruments. In this study, we used ImageNet 
[18], which comprised natural images as pre-trained data, 
and the diagnostic performance could be further improved 
if transfer learning using medical image training data [29] 

was used. 

Conclusions
CS is much less prevalent than EC and challenging to dis-
tinguish from EC; however, under the limited conditions 
of this study, deep learning provided comparable or better 
diagnostic performance to experienced radiologists when 
distinguishing between CS and EC on MRI. Although fur-
ther validation is needed, deep learning has the potential 
to help with highly specialized MRI image interpretation.
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