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Abstract
Purpose: The aim of this study was to develop radiomics signature-based magnetic resonance imaging (MRI) to 
determine adrenal Cushing’s syndrome (ACS) in adrenal incidentalomas (AI).

Material and methods: A total of 50 patients with AI were included in this study. The patients were grouped as non- 
functional adrenal incidentaloma (NFAI) and ACS. The lesions were segmented on unenhanced T1-weighted (T1W) 
in-phase (IP) and opposed-phase (OP) as well as on T2-weighted (T2-W) 3-Tesla MRIs. The LASSO regression model 
was used for the selection of potential predictors from 111 texture features for each sequence. The radiomics scores 
were compared between the groups. 

Results: The median radiomics score in T1W-Op for the NFAI and ACS were –1.17 and –0.17, respectively (p < 0.001). 
Patients with ACS had significantly higher radiomics scores than NFAI patients in all phases (p < 0.001 for all).  
The AUCs for radiomics scores in T1W-Op, T1W-Ip, and T2W were 0.862 (95% CI: 0.742-0.983), 0.892 (95% CI: 
0.774-0.999), and 0.994 (95% CI: 0.982-0.999), respectively.

Conclusion: The developed MRI-based radiomic scores can yield high AUCs for prediction of ACS.

Key words: non-functioning adrenal incidentalomas, adrenal Cushing’s syndrome, magnetic resonance imaging, ma-
chine learning.
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Introductions
Adrenal incidentalomas (AI) are adrenal masses detected 
on imaging for diseases other than adrenal diseases.  
AI is detected in 5% of patients undergoing radiological 
imaging. The incidence of AI is increasing with the further 
use of radiological imaging in the clinic [1]. The guidelines 
suggest that AIs should be investigated for malign or be-
nign nodules because the most common cause of adrenal 
masses is metastasis of malignant tumours [2]. This dis-
tinction can be made highly accurately with clinical history 
and conventional radiological imaging. The second most 
common cause of AIs is adrenal adenomas. If AI exhibits 
lower density on unenhanced computed tomography (CT) 
than 10 Hounsfield units (HU), it can be diagnosed with 
confidence (sensitivity of 71% and specificity of 98%) and 

is referred to as a fat-rich adenoma. In addition, the adre-
nal adenoma can be distinguished from malign adrenal 
masses by showing wash-out on enhanced CT and chemi-
cal shift in dual-echo sequences on magnetic resonance 
imaging (MRI) [3]. 

The guidelines recommend that adrenal adenoma 
should be analysed in terms of functionality on the second 
step duration at diagnosis [2,4]. Adrenal adenomas are di-
vided into subgroups as non-functional AI (NFAI), auto
nomous mild cortisol-secreting AI (ACSAI), aldosterone- 
producing adenoma (APA), pheochromocytoma, and  
adrenal Cushing’s syndrome (ACS) [5]. With conventional 
radiological imaging, adrenal adenomas are not tested for 
functionality and cannot be distinguished into subgroups. 
For this distinction, clinical evaluation and detailed en-
docrine tests such as 1 mg dexamethasone and 24-hour 
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urine cortisol are required. Due to these laborious tests, 
the majority of patients refuse further examinations, and 
the AIs remain indeterminate [2]. 

Radiomics is the texture analysis of conventional ra-
diological images with specific software and obtaining 
properties that cannot be detected by the human eye.  
Virtual tissue analysis can be performed on tumours by 
using radiomics. Recent studies indicate that distinguish-
ing between malign or benign adrenal nodules is feasible 
with texture analysis. It has also been established in a few 
studies that APAs can be detected with high accuracy us-
ing radiomics analysis [5-7]. As far as we know, there are 
no radiomics studies investigating ACS in AIs.

Therefore, the aim of this study was to develop a ra-
diomics signature-based MRI to determine ACS in AIs.

Material and methods

Patient population

All consecutive patients diagnosed with AI on MRI be-
tween 2015 and 2021 were included in the study. The in-
clusion criteria were determined as NFAI or AI compatible 
with ACS by the endocrinological evaluation, and solid 
and unilateral features of the adrenal mass. The adrenal 
lesion was not suitable for segmentation due to respiratory 
artifacts on MRI, known ACSAI, pheochromocytoma, or 
APA as exclusion criteria.

The Institutional Clinical Research Ethical Committee ap-
proved this single-centre retrospective study. Informed con-
sent was obtained from all patients before all diagnostic pro-
cedures according to the 1964 Helsinki Declaration principles.

Endocrinological evaluation

The diagnosis of ACS was made on the basis of biochemi-
cal tests including serum cortisol and plasma adrenocor-
ticotrophic hormone (ACTH) levels, urinary free corti-
sol, and overnight low-dose dexamethasone suppression 
testing. ACS was diagnosed in the presence of classical 
clinical signs and symptoms. All patients underwent base-
line cortisol, ACTH measurement, and 1 mg overnight 
dexamethasone suppression test (DST). Patients with 
NFAI whose cortisol levels were suppressed (≤ 1.8 µg/dl) 
following the midnight 1 mg DST, with normal 24-hour 
metanephrine-normetanephrine levels in urine, and plas-
ma aldosterone (ng/dl)/renin (ng/ml/h) ratio < 20 were 
considered “non-functional”. Interpretation of the 1 mg 
overnight DST results is based on the guidelines [2]. 

Magnetic resonance imaging

All MRI scanning was acquired using a 3.0-T MRI (In-
genia, Philips Medical Systems, Netherlands). MRI pro-
tocol included T1-weighted (T1W) chemical shift (CS), 
in-phase (Ip) and opposed-phase (Op) imaging, and 

turbo spin-echo T2-weighted (T2W) on the axial plane.  
The specific parameters of MRI were as follows: T1-W chem-
ical shift spoiled gradient echo sequence on the axial plane 
(TR/ TE = 1500/1.37 and 2.27 ms; slice thickness = 3 mm; 
interslice gap = 0.6 mm; matrix = 320 × 182; field of view 
= 400 × 400), half Fourier single-shot turbo spin-echo 
T2W sequence on the axial plane (TR/TE = 2000/90 ms; 
slice thickness = 3 mm; interslice gap = 0.6 mm; matrix = 
256 × 179; field of view = 400 × 400).

Segmentation and texture analysis

DICOM data was transferred to dedicated software (Olea 
sphere v.3 SP2, Olea Medical, France) for segmentation 
and texture analysis of adrenal lesions. The boundaries of 
the adrenal lesion were manually drawn slice-by-slice on 
T1W-Ip and T1W-Op imaging and T2-weighted (T2W) 
images. A volume of interest (VOI) covering the entire 
lesion was created. The images were normalized using the 
Z score to eliminate the possible effects of protocol and 
scan parameters. A total of 111 grey level properties (first 
and second-order) of the generated VOI were extracted.

Radiomics feature selection 

The least absolute shrinkage and selection operator (LASSO) 
method, proposed by Tibshirani (1996), is a widely used 
algorithm for the reduction of high-dimensional data and 
variable selection, especially in radiomics studies in recent 
years. Basically, LASSO minimizes the regression coeffi-
cients of redundant features to determine the best subset 
of radiomics features. 

In this study, a total of 111 features were extracted for 
each patient based on MRI, and the radiomics feature se-
lection process was carried out using the LASSO method. 
The LASSO method was combined with logistic regres-
sion to select the features most associated with Cush-
ing’s syndrome from 111 candidate radiomics features.  
The “glmnet” package was used in R software for LASSO 
logistic regression. First, the LASSO tuning parameter (λ), 
which gives the maximum area under the curve (AUC) 
and the minimum cross-validation error, is determined. 
Using the minimum criteria in 5-fold cross-validation 
with 100 replications, the value of the optimal tuning pa-
rameter that the model best fitted to the data was deter-
mined as λ = 0.09749558 in T1W-Op, λ = 0.07921766 in 
T1W-Ip, and λ = 0.02147446 in T2W. Non-zero radiomics 
features were selected with the tuning parameter deter-
mined in each phase, and the radiomics score was calcu-
lated for each patient by a linear combination of the se-
lected radiomics features with their respective coefficients.

Statistical analysis 

Categorical variables were expressed as numbers and 
percentages, whereas continuous variables were summa-
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rized as mean and standard deviation and as median and 
minimum-maximum where appropriate. The chi-square 
test was used to compare sexes between the groups. The 
normality of distribution for continuous variables (age, ra-
diomics scores) was confirmed with the Shapiro-Wilk test. 
For comparison of continuous variables between 2 groups, 
Student’s t-test or the Mann-Whitney U test was used de-
pending on whether the statistical hypotheses were fulfilled. 
The distribution of radiomics scores in the study groups is 
shown with the violin (violin) graph. The „ggplot2” pack-
age was used for violin plots. The performance of radiomics 
scores was evaluated by receiver operating characteristic 
(ROC) curve analysis and performance measures (area un-
der the curve-AUC, sensitivity, specificity, accuracy) were 
obtained. The best cut-off point was determined according 
to the IU method [8].

The resulting AUCs were compared using DeLong’s 
test. The statistical level of significance for all tests was 
0.05.  The statistical analysis was performed using R soft-
ware version 3.3.2 and IBM SPSS Statistics version 20.0.

Results
A total of 50 patients with AI were included in this study. 
There were 16 patients in the ACS group, including 15 
(93.8%) males and one (6.2%) female, with mean age 59.7 
± 10.7 years (median, 61.0 years). There were 34 patients 
in the NFAI group, including 19 (55.9%) males and 15 
(44.1%) females, with mean age 47.8 ± 14.1 years (median, 
58.0 years). There were no significant differences in age  
(p = 0.325) between the 2 groups but a significant differ-
ence in sex (p = 0.019).

According to 5-fold cross-validation, 111 extracted 
features were reduced to 5, 5, and 12 potential predictors 
for T1W-Op, T1W-Ip, and T2W radiomics score con-
struction, respectively, using the LASSO logistic regres-
sion model. Details of the selected features are shown in 
Table 1, and the distribution of the radiomics scores is 
given in Figure 1. 

The median radiomics scores in T1W-Op for the NFAI 
and ACS were –1.17 and –0.17, respectively (p <0.001).  

Table 1.  Selected features for the T1-weighted opposed-phase (T1W-Op), T1-weighted in-phase (T1W-Ip), and T2-weighted (T2W) phase

Phase of magnetic resonance imaging

T1W-Op (n = 50) T1W-Ip (n = 50) T2W (n = 50)

Feature Coefficient Feature Coefficient Feature Coefficient

Intercept 0.3755253 Intercept –1.255187 Intercept –2.560467

Original Shape Voxel 
Volume

0.00003600333 Original Shape Mesh 
Volume

0.00003152016 Original Shape Maximum 2D Diameter 
Column

0.004528224

Original Shape Surface 
Area to Volume Ratio

–1.919865 Original Shape Minor Axis 
Length

0.006888999 Original Shape Maximum 2D Diameter 
Row

0.07499843

Original Shape Minor 
Axis Length

0.01097283 Original First Order 
Standard Deviation

–6.718571 Original First Order Standard Deviation –9.306228

Original First Order 
Standard Deviation

3.595912 Original Grey Level Size 
Zone Matrix Large Area 

High Grey Level Emphasis

0.000003923087 Original First Order Skewness –2.226719

Original Gray Level Size 
Zone Matrix Large Area 

Emphasis

0.02029405 Original Grey Level 
Dependence Matrix Large 

Dependence Emphasis

0.2650397 Original Grey Level Co-occurrence Matrix 
Cluster Prominence

–0.00000089917

Original Grey Level Co-occurrence Matrix 
Joint Energy

758.0025

Original Grey Level Run Length Matrix 
Run Variance

37.35687

Original Grey Level Run Length Matrix 
Long Run Low Grey Level Emphasis

4.236102

Original Grey Level Size Zone Matrix 
Small Area High Grey Level Emphasis

–0.003970735

Original Neighbouring Gray Tone 
Difference Matrix Coarseness  

36.6343

Original Neighbouring Grey Tone 
Difference Matrix Busyness

2.882380

Original Grey Level Dependence Matrix Large 
Dependence Low Grey Level Emphasis

1.076042

Features were selected via LASSO modelling. A set of 5, 5, and 12 features were selected in the T1W-Op, T1W-Ip, and T2W phases, respectively.
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Patients with ACS had significantly higher radiomics scores 
than NFAI patients in all phases (p < 0.001 for all) (Table 2). 

Table 3, Figure 2, and Figure 3 show the diagnostic 
performance of the radiomics score in discrimination 
between NFAI and ACS. The AUCs for radiomics scores 
in T1W-Op, T1W-Ip, and T2W were 0.862 (95% CI:  
0.742-0.983), 0.892 (95% CI: 0.774-0.999), and 0.994 
(95% CI: 0.982-0.999), respectively. The performance of 
the radiomics score in T2W was significantly higher than 
in T1W-Op (p = 0.028). In addition, the radiomics score 
in T1W-Ip showed similar discrimination performance as 
the radiomics scores in T1W-Op and T2W (p = 0.195,  
p = 0.086, respectively). Although the AUC values of 
T1W-Ip and T2W were similar, the sensitivity and speci-
ficity were higher in T2W (Figure 3).

Discussion
ACS is associated with poor quality of life, morbidity, and 
5-fold higher mortality. The patients may present with 
central obesity, thinned skin with wide purple striae, fa-
tigue, proximal muscle weakness, hypertension, glucose 
intolerance, acne, and hirsutism [9]. Because manifesta-
tions of ACS are variable, the diagnosis may be challeng-
ing when signs and symptoms are subtle. And symptoms 
may overlap other systemic diseases such as diabetes mel-
litus or hypertension. When ACS is clinically suspected in 
AI, biochemical tests are needed to establish the presence 
of cortisol excess. The screening tests include 24-hour 
urinary-free cortisol, 1 mg overnight dexamethasone sup-
pression, and late-night salivary cortisol level, which refer 
to excessive cortisol secretion in a 24-hour period. These 
tests are the high sensitivity and specificity gold standard 
for diagnosis [2]. However, due to the long duration and 
cost, patients can leave the process halfway through with-
out a diagnosis [1,10]. In conventional radiological eval-
uation, the separation of adenoma and non-adenoma is 
performed with high sensitivity and specificity with signal 
intensity measurement and calculations in MRI. However, 
it cannot be ascertained whether there is hormone secre-
tion [11]. There is a need for cheaper and simpler tests of 
applicability in this area. The presented study shows that 
ACS could be well predicted using the radiomics score 
approach in AIs. In other words, the radiomics signature 
alone performed powerfully in classifying AIs.

Radiomics has developed rapidly in endocrine neo-
plasm practice in the past decade. In endocrine tumours 

Figure 1. Distribution of radiomics scores, Waterfall plot. Grey bars show 
radiomics scores for patients with adrenal cushing syndrome (ACS); green 
bars show radiomics scores for patients with non-functional adrenal inci-
dentaloma (NFAI). T1W –T1-weighted, Op –opposed-phase, Ip – in-phase, 
T2W – T2-weighted

Table 3. Predictive performance of the radiomics scores

  Cut-off Sensitivity Specificity Accuracy AUC (95% CI) p-value

Radiomics score (T1W-Op) –0.69 0.88 0.85 0.86 0.862 (0.742-0.983) < 0.001

Radiomics score (T1W-Ip) –0.78 0.88 0.85 0.86 0.892 (0.774-0.999) < 0.001

Radiomics score (T2W) –0.44 0.94 0.97 0.94 0.994 (0.982-0.999) < 0.001
T1W – T1-weighted, Op – opposed-phase, Ip – in-phase, T2W – T2-weighted

Table 2. Radiomics score distributions between the groups 

Radiomics 
score

Groups p-value

NFAI
(n = 34)

ACS
(n = 16)

T1W-Op –1.13 ± 0.55
–1.17 (–2.29-0.33)

–0.21 ± 0.64
–0.17 (–1.48-0.85)

< 0.001

T1W-Ip –1.39 ± 0.68
–1.41 (–3.08 to –0.07)

0.15 ± 1.02
0.13 (–1.79-1.78)

< 0.001

T2W –2.53 ± 1.45
–2.31 (–6.33 to –0.12)

1.81 ± 2.19
1.18 (–0.46-7.04)

< 0.001

NFAI – non-functional adrenal incidentaloma, ACS – adrenal Cushing’s syndrome,  
T1W – T1-weighted, Op – opposed-phase, Ip – in-phase, T2W – T2-weighted
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such as pituitary adenoma, thyroid nodules, and pancre-
atic neuroendocrine tumours, radiomics has been tested 
in many areas such as diagnosis, prognosis determination, 
and recurrence [12,13]. The application of radiomics in 
the adrenal gland is rarely reported [5,7]. 

Yu et al. evaluated the use of texture analysis for diffe
rentiation between benign and malignant adrenal lesions 
on contrast-enhanced abdominal CT. When analysing the 
texture, they only tested the parameters of the first order. 
They found that entropy and standard deviation dem-
onstrated AUCs ranging from 0.91 to 0.97 for discrimi-
nating tumours, with sensitivities and specificities rang-
ing from 73% to 95%, respectively [7]. In the presented 
study, a more complex texture analysis including first and 
second order was performed. Although the first order is 
a simpler texture analysis application, we think that more 
detailed information about texture can be obtained with 
second-order and high-order analyses.

Romeo et al. assessed the diagnostic efficacy of texture 
analysis extracted from MRI including T2W, T1W-Op, 
and T1W-Ip for characterizing AI (adrenal adenoma vs. 
non-adenoma). They obtained a diagnostic accuracy of 
80% [14]. Similarly to Romeo et al., the unenhanced MRI 
sequences (T1W and T2W) were used in the presented 
study. This is especially important for patients with im-
paired renal function due to the effects of hypercorti-
solism. Moreover, it provides an advantage in terms of 
cost. These sequences are traditional images, which can be 
achieved in a short time. The AUC of the radiomics score 
in T2W was increased to 0.994 compared to other phases 
of the study. However, to reach a definite conclusion, the 
most suitable sequences for texture analyses should be 
tested in future studies.

He et al. developed a clinical-radiomics on CT nomo-
gram for the preoperative prediction of the APA risk in 
patients with unilateral adrenal adenoma. The nomogram 
showed good discrimination (AUC: 0.912) between NFA 
and APA [15]. In the presented study, the AUC of radiomics 
score to predict ACS was 0.994 (95% CI: 0.982-0.999), with 
a sensitivity of 0.94 and a specificity of 0.97.  The clinical 

features did not use for the radiomics model, the use of 
additional clinical and laboratory parameters along with 
radiomic features may lead to better classification.

Zheng et al. explored the application value of multi-
parametric CT radiomics in differentiation between APA 
and cortisol-producing functional adrenocortical adeno-
mas. ACSAI and ACS were placed in the same group [16]. 
A radiomics model yielded a sensitivity of 0.935, a speci
ficity of 0.823, and an accuracy of 0.887 (AUC: 0.882, 
95% CI: 0.819-0.945). They constructed a nomogram 
that achieved good discrimination performances, yield-
ing a sensitivity of 0.915, a specificity of 0.928, and an ac-
curacy of 0.922 (AUC = 0.902, 95% CI = 0.822-0.982).  

The nomogram included morphological radiologic fea-

Figure 3 A-C. Performance of radiomics score in discriminating adrenal Cushing syndrome (ACS) for 3 phases. Grey circles represent patients. The dashed 
lines indicate the cut-off value of the radiomics score. Patients above the threshold line were classified as ACS, while patients below the threshold line were 
classified as non-functional adrenal incidentaloma (NFAI). T1W – T1-weighted, Op – opposed-phase, Ip – in-phase, T2W – T2-weighted

Figure 2. The receiving operating characteristics curves of the radiomics 
score on T1-weighted opposed-phase (T1W-Op), T1-weighted in-phase 
(T1W-Ip), and T2-weighted (T2W). ACS – adrenal Cushing syndrome,  
NFAI – non-functional adrenal incidentaloma
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tures such as contralateral adrenal size [16]. In the pre-
sented study, morphological radiologic features were not 
used, to reduce subjectivity. 

The limitations of this study are the small sample size 
(especially the number of Cushing syndrome cases was 
limited) and the single-centre nature of the study. There-
fore, validation by multicentre prospective studies is re-
quired prior to its wide use in clinical practice. Another 
limitation is that interobserver reproducibility in feature 
extraction could not be evaluated because only one radi-
ologist was used to evaluate the images.

Conclusions
The radiomics score reflects a perfect performance in 

differentiating between NFAI and ACS. The radiomics 
score has the potential to predict ACS with up to 94% ac-
curacy. The developed MRI-based radiomic scores yielded 
high AUCs for the prediction of ACS for each phase. 
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