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Abstract
Magnetic resonance imaging (MRI) is a powerful imaging modality, but one of its drawbacks is its relatively long 
scanning time to acquire high-resolution images. Reducing the scanning time has become a critical area of focus in 
MRI, aiming to enhance patient comfort, reduce motion artifacts, and increase MRI throughput. In the past 5 years, 
artificial intelligence (AI)-based algorithms, particularly deep learning models, have been developed to reconstruct 
high-resolution images from significantly fewer data points. These new techniques significantly enhance MRI effi-
ciency, improve patient comfort and lower patient motion artifacts. Improving MRI throughput with lower scanning 
duration increases accessibility, potentially reducing the need for additional MRI machines and associated costs.

Several fields can benefit from shortened protocols, especially for routine exams. In oncologic imaging, faster MRI 
scans can facilitate more regular monitoring of cancer patients. In patients suffering from neurological disorders, 
rapid brain imaging can aid in the quick assessment of conditions like stroke, multiple sclerosis, and epilepsy, im-
proving patient outcomes. In chronic inflammatory disease, faster imaging may help in reducing the interval between 
imaging to better check therapy outcomes. Additionally, reducing scanning time could effectively help MRI to play 
a role in emergency medicine and acute conditions such as trauma or acute ischaemic stroke. 

The purpose of this paper is to describe and discuss the advantages and disadvantages of introducing deep learning 
reconstruction techniques to reduce MRI scanning times in clinical practice.
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Introduction 
Magnetic resonance imaging (MRI) is renowned for its 
high-contrast resolution, making it an essential tool in medi-
cal diagnostics. The high-contrast resolution of MRI is due 
to its ability to differentiate between different tissue types 
based on their water content and relaxation properties [1,2].

However, MRI suffers from relatively long scanning 
times to acquire high-resolution images. These long scan-
ning times can be attributed to several factors, including 
the need for multiple sequences, high-resolution require-
ments, and patient cooperation [3,4].

Long waiting lists for MRI scans are a significant issue 
in both the USA and Europe, leading to delays in diagno-
sis and treatment. This problem is multifaceted, involving 
factors such as the high demand for MRI services, limited 
availability of MRI machines, staffing shortages, and finan-
cial constraints.

Reducing MRI scanning times has become a critical 
area of focus in medical imaging, aiming to enhance pa-
tient comfort, reduce motion artifacts, and increase the 
throughput of MRI machines. Advances in software and 
algorithm development have significantly contributed 
to reducing MRI scanning times. Partial Fourier imag-
ing reconstructs the full image from partial k-space data,  
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reducing the scan time by acquiring only a fraction of the 
data required for full Fourier reconstruction [8]. Paral-
lel imaging (PI) techniques such as SENSE (sensitivity 
encoding) and GRAPPA (generalised autocalibrating 
partially parallel acquisitions) use phased-array coils to 
simultaneously capture different parts of the image, thus 
reducing acquisition time [5,6]. Introduced more recently, 
compressed sensing (CS) technique reconstructs images 
from under-sampled data by exploiting the sparsity of 
the image in a certain transform domain (e.g. wavelet do-
main). It significantly reduces the amount of data needed, 
thereby shortening scan times [7].

Most recently, artificial intelligence (AI)-based algo-
rithms, particularly deep learning models, are being used 
to reconstruct high-quality images from significantly 
fewer data points. These algorithms can predict missing 
information, thereby reducing the need for extensive data 
acquisition. In this settings, different vendors including 
GE Healthcare, Siemens Healthineers, and Philips have 
developed AI-based MRI acceleration techniques [9].

The development of these advanced software tech-
niques has significantly enhanced the efficiency of MRI 
scanning, making it possible to obtain high-quality im-
ages in a fraction of the time previously required. These 
technologies continue to evolve, driven by ongoing re-
search and the increasing integration of AI and machine 
learning into medical imaging. By reducing scan times, 
these innovations improve patient experience, increase 
scanner utilisation, and potentially shorten waiting lists.

Reducing MRI scanning offers several advantages, 
both for patients and for healthcare providers. One of the 
most intuitive advantages is improved patient comfort. 
Faster scans mean patients spend less time in the MRI 
machine, which can reduce anxiety and discomfort, espe-
cially for those with claustrophobia. Reduced scan times 
also lower the likelihood of patient movement, which can 
degrade image quality and necessitate rescans, making 
MRI more feasible for those who have difficulties remain-
ing still for long periods, such as children, elders, and peo-
ple with specific medical conditions. Parallelly, the need 
for sedated exams could be reduced in clinical practice. 

Another key point is the increased accessibility, where 
quicker appointments can lead to more available slots, 
reducing waiting times for patients needing urgent diag-
nostics. Also, shorter scan times allow more patients to 
be scanned, improving MRI throughput with subsequent 
better resource management, potentially reducing the 
need for additional MRI machines and associated costs. 
These improvements lead to cost-effectiveness: the reduc-
tion of operational costs, as shorter scans reduce power 
consumption, potentially lowering operational and main-
tenance costs.

On the other hand, deep learning (DL) and AI tech-
niques can be used to increase image quality by reducing 
the risk of motion artifacts, leading to sharper images and 
more accurate diagnosis. Also, deep learning reconstruc-

tion (DLR) techniques can enhance image quality by effec-
tively reconstructing images from reduced data, potentially 
providing better diagnostic information even with shorter 
scans.

From a scientific point of view, faster scanning proto-
cols can accelerate the pace of clinical trials by enabling 
quicker imaging processes, thereby speeding up research 
and development timelines. For example, larger datasets 
can be achieved in shorter times, which can be invaluable 
for research and the further training of AI algorithms.

Among real-world applications, several fields can take 
advantage of shortened protocols, which can impact sig-
nificantly routine exams. In oncologic imaging, faster MRI 
scans can facilitate more regular monitoring of cancer pa-
tients, allowing for timely adjustments to treatment plans. 
In patients suffering from neurological disorders, rapid 
brain imaging can aid in the quick assessment of condi-
tions like stroke, multiple sclerosis, and epilepsy, improv-
ing patient outcomes. In chronic inflammatory disease, 
faster imaging may help in reducing the interval between 
imaging to better check therapy outcomes. All these pa-
tients are usually imaged with MRI because of its higher 
contrast resolution in soft tissues. 

Additionally, reducing the scanning time could help 
MRI to play a role in emergency medicine and acute con-
ditions such as trauma or acute ischaemic stroke. Finally, 
with short MRI studies available, more routine screenings 
and preventative health studies could be achieved.

Implementing DLR to reduce MRI scanning times 
presents multiple advantages, enhancing the patient ex-
perience, improving operational efficiency, and pushing 
the boundaries of medical research and diagnostics. These 
innovations promise to make MRI more accessible, time-
effective, and diagnostically powerful. Probably, within 
a few years, all MRI scanners will use DLR, which can 
drastically modify their protocols. The dilemma for radio-
logists in choosing the level of acceleration for MRI im-
ages using DLR lies in balancing image quality, diagnostic 
accuracy, and scanning efficiency. 

In this paper, all the pros and cons of using DLR in 
clinical practice will be discussed. Additionally, we will 
share our direct experience of approximately 20 months 
using dedicated software for reducing acquisition times, 
installed on the MRI and used at various acceleration fac-
tors in clinical routine, to acquire scans of any type, from 
head to toe.

Scanner and software employed 

Image acquisition

All patients were examined with a 3.0 Tesla MR scanner 
(uMR Omega, United Imaging Healthcare, Shanghai,  
China). Institutional review board permission was waived 
for this narrative review study.  All data were collected as 
part of routine care, including only adult patients.
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Image reconstruction

All images were reconstructed using conventional accele-
ration techniques as well as the FDA-approved AI-assisted 
compressed sensing (ACS). ACS is a DLR that was trained 
with over 2 million fully sampled slices previously ac-
quired with phantom (2%) and volunteers (98%) [9] 
(Figure 1).

Conventional acceleration techniques combine dif-
ferent acceleration techniques in series like half Fourier 
(HF), PI, or CS. However, the sequential acceleration 
structure may lead to error amplification at each level, 
which threatens data accuracy. ACS provides a new ac-
celeration solution for MRI by innovatively introducing 
an AI module based on deep neural networks. The output 
of the AI module is one of the constraint terms for the 
subsequent iterative reconstruction processes, combined 
with HF, PI, and CS, to achieve multi-directional image 
data verification and realise high image quality at ultra-
high acceleration.

In ACS, the output image from the reconstruction 
neural network is subjected to iterative optimisation based 
on k-space raw data. To ensure trustworthy DL results, 
a specialised mathematical constraint module is imple-
mented after the net chain, demonstrating the impor-
tance of leveraging data information for optimisation in 
iterative reconstruction, compared to techniques that rely 
solely on AI performance. Consequently, the AI-enabled, 
ultra-fast, high-fidelity, and comprehensive whole-body 
MR application made possible by this technology has giv-
en MRI unprecedented degrees of freedom and potential.

ACS is delivered with a graphics processing unit (GPU)- 
based AI reconstruction engine that supports ultra-high-
speed “real-time” reconstruction. GPU provides a powerful 
and reliable hardware support for the training, deployment, 
and testing of artificial neural network models, with recon-
struction speed increasing by more than 43%.

Using deep learning and artificial intelligence  
in clinical practice

Increase image quality

DL and artificial intelligence can enhance imaging quali-
ty working on multiple levels [10-13]. Moreover, DLR 
can produce high-quality images faster while effectively 
reducing noise in MRI images. By training on large da-
tasets of noisy and clean image pairs, DLR distinguishes 
and removes noise while preserving important anatomical 
details. This leads to clearer and more diagnostically use-
ful images (Figure 2).

Additionally, super-resolution techniques involve 
training DLR to reconstruct high-resolution images from 
low-resolution acquisition. This enhances the detail and 
clarity of the images, making it easier to identify small 
structures and subtle abnormalities. 

Also, DLR can improve contrast in MRI images by re-
ducing noise level, making it easier to differentiate between 
tissues with similar signal intensities. This is particularly 
useful in identifying lesions, tumours, and other pathologi-
cal features that may not be easily distinguishable with stan-
dard imaging techniques.

Figure 1. ACS reconstruction pipeline. ACS integrates specialised mathematical constraints with AI to achieve reliable results. The ACS module effectively 
remedies reconstruction errors in parallel imaging and half Fourier method, while the reliability issues associated with deep learning’s “black box” effect 
are solved by the mathematical iterative model, which includes compressed sensing, phase constraints, and data fidelity
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Artifact reduction

MRI images are prone to various artifacts, such as mo-
tion artifacts, Gibbs ringing, and aliasing. DLR can learn 
to identify and reduce these artifacts, resulting in even 
cleaner images. For example, models can be trained to 
recognise patterns associated with motion and adjust the 
images accordingly [14-17].

Johnson et al. [16] presented a conditional genera-
tive adversarial network (GAN) approach to correct for 
rigid-body motion artifacts in 3D MRI, showing signifi-
cant improvements in image quality. In another recent 
paper, Tamada et al. [18] explored a DL framework de-
signed to reduce motion artifacts in MRI, comparing its 
performance to traditional techniques and demonstrating 
enhanced image clarity and diagnostic value. 

Simply but very effectively, motion artifacts can be 
reduced or even eliminated in difficult patients by signifi-
cantly reducing acquisition times. For example, by halving 
the scan times for uncooperative patients, it is possible to 
remove annoying motion artifacts in the brain, achieving 
excellent image quality (Figure 3).

By leveraging DLR to accelerate MRI scans, enhance 
image quality, and reduce motion artifacts, the overall MRI 
experience can be made more tolerable for patients, decreas-
ing the need for sedation. This is particularly beneficial for 
vulnerable populations such as children, elderly patients, and 
patients with conditions that make staying still difficult. 

The key factors are the acceleration of scan times, im-
proving image quality and reducing motion artifacts. Short-
er and more efficient scans can help reduce the anxiety and 
discomfort associated with MRI procedures, particularly for 
paediatric patients, thus reducing the reliance on sedation.

Automated patient positioning 

Automated patient positioning in MRI is a technological 
advancement that aims to improve the accuracy and ef-
ficiency of MRI exams [19,20]. This technology utilises 
AI and machine learning algorithms to position patients 
correctly within the MRI scanner, thereby reducing setup 
times and minimising operator-dependent variability.  
Automated positioning systems can standardise the pa-
tient setup process, ensuring consistent and optimal posi-
tioning for every scan. This reduces the likelihood of res-
cans due to suboptimal positioning, which can save time 
and improve patient throughput.

These systems typically use DL algorithms trained on 
large datasets of MRI scans to recognise anatomical land-
marks and position patients accurately. The algorithms 
can adapt to various body types and scanning require-
ments, further enhancing the reliability of the positioning.

By automating the positioning process, technologists 
can reduce the time spent on manual adjustments, allow-
ing for a quicker transition between patients and more 
efficient use of the MRI scanner.

Automated positioning can be particularly beneficial 
in settings where high patient throughput is required, 
such as in large hospitals or imaging centres. It can also 
be advantageous for paediatric or geriatric patients, who 
may have difficulty remaining still for extended periods.

Reducing the scanning time

AI and DL play a pivotal role in reducing scanning times 
in MRI by optimising various aspects of the imaging pro-
cess. DLR uses a combination of techniques such as CS 

Figure 2. A 46-year-old man undergoing shoulder MRI. On standard axial PD fat saturated image, some noise and blurring artifacts cause a decrease in 
image quality. The sequence, repeated with a low acceleration factor, significantly improved the image quality, reducing noise and increasing the spatial 
and contrast resolution

A B
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and PI. Traditional MRI relies on fully sampling k-space 
data, but DLR can reconstruct high-quality images from 
under-sampled data. Recent AI driven software can work 
both during the acquisition of data, and during the recon-
struction of images. GANs can generate high-resolution 
images from lower-resolution inputs, effectively reducing 
the need for long scanning times [21]. Also, AI can lead to 
the use of smart protocols: in particular, AI-driven proto-
cols can optimise scanning protocols by selecting the best 
sequences and parameters tailored to each patient, thus 
shortening the overall scan time [22]. 

Reducing redundant data acquisition by using an adap-
tive sampling approach is another way AI can work. AI 
can adaptively decide which parts of k-space need to be 
sampled more densely and which can be under-sampled, 
reducing the overall acquisition time without sacrificing 
image quality [23].

Enhanced image quality, by means of noise reduction 
to enhance the signal-to-noise ratio of MR images, allows 
for shorter acquisition times because fewer data are need-
ed to achieve the same image quality [24].

Recently, a patient-specific scanning strategy (tailored 
imaging) is based on models that predict patient-specific 

anatomy and pathology, allowing for more efficient scan-
ning strategies tailored to the individual’s needs.

AI and DL are revolutionising MRI by enabling faster, 
more efficient scans through advanced reconstruction tech-
niques, real-time artifact correction, optimised protocols, 
adaptive sampling, and enhanced image quality. These in-
novations reduce the time patients spend in scanners, im-
prove patient comfort, and increase the throughput of MRI 
facilities. Shorter scan times allow for quicker diagnosis, 
enabling timely treatment initiation which can be crucial 
for conditions like stroke, trauma, and certain cancers [25].

One of the most important achievements is the in-
creased throughput: MRI facilities can accommodate 
more patients per day, reducing waiting times and im-
proving access to necessary imaging services.

As a consequence, an optimised workflow could be al-
lowed by shorter scan times that can streamline workflow 
in radiology departments, allowing for better resource 
management and reduced bottlenecks [26]. Also, the 
increased efficiency and patient throughput can lead to 
lower operational costs and better utilisation of expensive 
MRI equipment. Among improvements in clinical out-
comes, the possibility of enhanced follow-up due to easier 

Figure 3. A 58-year-old man suffering from involuntary spasms, undergoing brain MRI. Axial post-contrast-enhanced T1 images show heavy motion artifacts 
on different levels (A, B, C). The sequence, repeated with a medium acceleration factor, allowed significant improvement of the image quality by eliminating 
the motion artifacts (D, E, F)
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access and reduced scan times can facilitate more frequent 
monitoring of chronic conditions and hence improve the 
effectiveness of treatments.

The issue of diagnostic accuracy in clinical practice

The integration of DL into MRI sequences has shown promise 
in maintaining, or even improving, diagnostic accuracy while 
reducing scanning times [23]. Some clinical validation stud-
ies have validated the clinical efficacy of DLR MRI protocols. 
These studies involve comparing the diagnostic performance 
of conventional MRI sequences with those accelerated by 
DLR. Johnson et al. [27] conducted a prospective study on 
170 patients and found that the dia gnostic accuracy of DLR 
MRI images was comparable to standard protocols, with sub-
stantial reductions in scanning times.

DLR MRI has been applied successfully in various 
clinical scenarios, including brain imaging, musculoske-
letal imaging, and cardiac imaging. These applications 
have shown that DLR can be generalised across different 
types of MRI exams. Sriram et al. [28] explored the use of 
DL in musculoskeletal MRI and demonstrated that DLR 
protocols could achieve high diagnostic accuracy across 
different anatomical regions.

The radiologist’s concern: How far can I push AI 
to reduce acquisition time?

With the advent of new MRI scanners, often equipped with 
AI and DL to reduce acquisition times, radiologists naturally 
start to ask some fundamental questions. Given that these 
systems are usually easy to use and should not significantly 
alter reconstruction times, it remains to be seen whether one 
should rely on DLR to reduce acquisition times compared 
to standard sequences. The fear for the average radiologist, 
accustomed to their workflow, might be losing fine details 
in the images that could affect their final judgment. MRI 
diagnoses are becoming increasingly precise, with sub- 
millimetric morphological alterations and signal changes 
sometimes so subtle that they can only be visualised with 
very long scanning times. It is therefore natural for profes-
sionals to worry that the quality of their diagnoses might de-
cline. Furthermore, even radiologists used to working with 
AI and reduced acquisition times might have a significant 
concern: How far can I push the acceleration factor? How 
reliable is AI as data under-sampling increases?

It is evident that the literature does not yet provide suf-
ficient answers to these questions. While there are indeed 
some well-structured prospective studies demonstrating 
that DLR images do not significantly reduce diagnostic 
accuracy, these studies are very limited in number and 
often focused on specific sequences and topics. Therefore, 
it is not possible to generalise their findings. Additionally, 
many studies result from using dedicated AI and DL kits 
rather than proprietary software that radiologists would 
use in their clinical practice. The hope is that dedicated, 
possibly multicentre, studies will emerge, prospectively 

and progressively testing the potential diagnostic accuracy 
of compressed sequences.

Personal experience

The following considerations arise from over 20 months 
of field experience using a 3T MRI scanner equipped with 
clinical product DLR capable of enhancing image quali-
ty while maintaining scan times or reducing acquisition 
times and keeping acquisition parameters unchanged. 
Because the image quality of standard sequences for any 
examined region, from head to toe, was considered very 
high (and certainly superior to the other 1.5 T scanners 
in our institute), we decided to optimise study protocols 
to reduce acquisition times and generally increase patient 
access to the scanner. To this end, we began testing the 
potential use of DLR scans with reduced times in a fairly 
random manner, repeating one or more key sequences of 
the study while keeping the acquisition parameters but in-
creasing the acceleration level. This simple approach was 
favoured by the ready availability of the software on the 
scanner and the extreme ease of use (only the acceleration 
factor needs to be set, and there are typically no delays in 
reconstruction). After this initial approach, the first re-
sults were very promising.

We are not just talking about maintaining good im-
age quality without encountering artifact-laden images, 
but also about being able to identify the smallest patho-
logical alterations in MRI images, whether they are small 
anatomical or morphological changes or subtle signal al-
terations. It seemed that even with significantly reduced 
acquisition times, we could always see the same findings, 
allowing for a correct diagnosis every time. However, this 
brings about a real dilemma for radiologists in choosing 
the acceleration factor for MRI images reconstructed us-
ing DLR. Higher acceleration factors can significantly re-
duce scan times, making the process quicker and more 
comfortable for patients. However, excessive acceleration 
factor may lead to loss of critical details, potentially com-
promising diagnostic accuracy. Lower acceleration factor 
maintains higher image quality but result in longer scan 
times, which can be less efficient. Also, in critical diag-
noses such as small lesions, microbleeds, or subtle tissue 
changes, high-resolution images are crucial. 

The diagnostic problem (from the perspective of a ra-
diologist used to state-of-the-art work using non-DLR 
sequences) is that “artificial” images created by compen-
sating for data under-sampling using DLR might mask 
or even produce artifacts that do not actually exist. The 
problem becomes more complex in oncologic patients. In 
these cases, the presence of a single millimetric metastasis 
can radically alter staging and thus the subsequent diag-
nostic and therapeutic pathway. Equally concerning is the 
possibility of a false positive, especially in oncology, where 
a patient with a false positive diagnosis of a small metas-
tasis might undergo a drastic and unnecessary change in 
their management plan.
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To address these questions, our institute is currently 
conducting several studies focused on the use of DLR se-
quences to reduce acquisition times. These studies share 
the same methodological framework: clinical studies that 
fall within the research topic are selected, and the stan-
dard protocol is performed without DLR, which will serve 
both for clinical diagnosis and to create our reference 
standard for the final diagnosis. Key sequences for the 
study are then selected and repeated using increasing ac-
celeration factors for DLR (Figures 4 and 5). The obtained 
datasets are then re-evaluated by various readers, and the 
results are compared with those of the standard exam to 
calculate diagnostic accuracy. 

Currently, preliminary results from ongoing studies dem-
onstrate diagnostic accuracy values of around 99% for medi-
um-high compression levels (2-3×) and nearly 100% for low 
compression levels. The results of these studies will be used 
as an internal reference for the optimisation of daily proto-
cols and may provide a methodological reference for other 
authors and radiologist colleagues in their daily practice.

At present, based on preliminary results, our institute’s 
approach would involve the following steps.

For routine scans where fine details are less critical, 
higher acceleration factor levels might be acceptable, fa-
cilitating faster scans and higher patient throughput. This 
is particularly true for anatomical imaging that might tol-

Figure 4. A 64-year-old woman suffering from breast cancer, undergoing brain MRI. Axial post-contrast-enhanced T1 image (A) identifying a single, tiny, 
enhancing lesion consistent with the diagnosis of a small metastasis (yellow circle), showing only mild perifocal oedema on corresponding axial reconstruct-
ed FLAIR image (yellow arrow on D). The sequences, repeated with a 2-fold acceleration factor (B, E) and with a 3-fold acceleration factor (C, F), confirm 
the presence of this tiny lesion (circle and arrow) while maintaining good image quality 

Figure 5. Testing high acceleration factor on PD fat sat imaging of the knee. A 42-year-old man suffering from lateral knee pain undergoing knee MRI. 
Standard coronal PD FAT sat image (A) identifying a large tear of lateral menisci (arrow). The same meniscal tear (arrow) is confirmed on the 2-fold (B) and 
4-fold accelerated images (C), while maintaining good image quality. On the corresponding 6-fold accelerated image (D), the meniscal tear is still beautifully 
depicted (arrow) despite a relative drop of image quality

D E

A B C

A B C D

F
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erate higher acceleration factors without significant loss 
of diagnostic information.

For complex studies, we prefer to use very low accel-
eration factors, which can still result in significant time 
savings on sometimes very long sequences (e.g. a non- 
accelerated sequence of 10 minutes can be reduced by 30% 
to 7 minutes). This is the case of functional studies like 
functional MRI (fMRI) or diffusion tensor imaging (DTI).

Also, in daily practice in cases where patient coope-
ration is limited (e.g. paediatric patients or those with 
movement disorders), faster scans with higher accelera-
tion factors might be preferred, to reduce motion artifacts. 
Similarly, in emergency situations, the need for rapid di-
agnosis might outweigh the need for the highest image 
quality, prompting the use of higher acceleration factors 
(e.g. stroke imaging).

The use of DL and AI in clinical practice will bring 
new challenges for radiologists. Radiologists must be fa-
miliar with how DL algorithms affect image quality at var-
ious acceleration factors. This requires additional training 
and experience with the technology. 

There is no universal standard for the optimal acceler-
ation factor. Different manufacturers and institutions may 
have varying recommendations and thresholds, making 
it challenging for radiologists to make consistent choices.

Radiologists must consider a multitude of factors si-
multaneously, including the specific clinical question, the 
anatomical area being imaged, and the patient’s condition, 
which can complicate the decision-making process.

Finally, the performance of DLR algorithms can vary 
between different MRI machines and software versions, 
introducing another layer of complexity in choosing the 
appropriate acceleration factor.

Potential future solutions could be the basis of clinical 
guidelines. Development of clinical guidelines and proto-
cols that provide recommendations for acceleration factors 
based on specific clinical scenarios and anatomical regions 
can help standardise decisions and reduce variability. 

Conclusions
In summary, reducing MRI scan times through the imple-
mentation of AI and DL technologies can lead to a range 
of benefits, including improved patient comfort and expe-
rience, enhanced diagnostic efficiency, operational ben-
efits for healthcare providers, better clinical outcomes, 
reduced motion artifacts, and expanded access to imag-
ing services. These advantages collectively contribute to 
a more effective and efficient healthcare system.
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