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Abstract
Purpose: Early detection of breast cancer is crucial for improving patient outcomes. With advancements in artificial 
intelligence (AI), there is growing interest in its potential to assist radiologists in interpreting mammograms for early 
cancer detection. AI algorithms offer the promise of increased accuracy and efficiency in identifying subtle signs 
of breast cancer, potentially complementing the expertise of radiologists and enhancing the screening process for 
early-stage breast cancer detection.

Material and methods: A systematic literature review was conducted to identify and select original research reports on 
breast cancer diagnosis by artificial intelligence versus conventional radiologists in using mammograms in accord-
ance with the PRISMA guidelines. Data were analysed with Review Manager version 5.4. P-value and I2 were used 
to test the significance of differences.

Results: This systematic review and meta-analysis included 8 studies with data from a total of 120,950 patients.  
Regarding the sensitivity of AI, the pooled analysis of 6 studies with sensitivities ranging from 0.70 to 0.89 yielded 
a sensitivity of 0.85. However, the sensitivity of the radiologists ranged from 0.63 to 0.85, with an overall sensitivity 
of 0.77. As for specificity, both radiologists and AI groups had closer results. 

Conclusions: The comparison between AI systems and radiologists in detecting early-stage breast cancer from mam-
mograms highlights the potential of AI as a valuable tool in breast cancer screening. While AI algorithms have shown 
promising results in terms of accuracy and efficiency, they should be viewed as complementary to radiologists rather 
than replacements. 
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Introduction
Breast cancer is the most common site-specific cancer 
in women and is the leading cause of death from cancer 
for women aged 20 to 59 years. It accounts for 26% of all 
newly diagnosed cancers in females and is responsible for 
15% of the cancer-related deaths in women. Besides lung 
cancer, breast cancer is the most common cause of cancer 
related death in the world, the latest cancer statistics for 
the USA estimate that in 2022, 31% of cancer cases detect-
ed in women were breast cancer, with 43,250 cases result-
ing in death. This accounts for 15% of all cancer-related 
deaths [1,2]. Approximately 600 men and 40,000 women 
die of breast cancer annually according to the findings of 
the American Cancer Society [3].

About 15% of women who get breast cancer have 
a positive family history of it, but only 5-10% of breast 
cancers are inherited. The most significant risk factors for 
breast cancer are female gender and age [4].

Breast cancer can be classified as benign, in situ car-
cinoma, or invasive carcinoma. Benign tumours are not 
classified as dangerous because they cause only a slight  
alteration in breast anatomy. In situ carcinomas are not 
dangerous if detected in the early stage and treated, be-
cause only the mammary duct lobules are affected and 
they do not spread to the other tissues. Invasive carcino-
ma is the most dangerous type because it can spread to 
any organ in the body [3].

Early detection is a crucial step to control and treat 
breast cancer. This aims at the detection of breast cancer 
very early in asymptomatic females to offer them a bet-
ter chance of cure. Early breast cancer screening through 
mammography, ultrasound, or magnetic resonance imag-
ing (MRI) has played an important role in helping detect 
breast cancer in the early stage, reduce the mortality rate, 
and improve prognosis; the mortality rate of breast cancer 
dropped by 40% from 1989 to 2017, which translates to 
375,900 breast cancer deaths averted [1,2].

The prognosis of breast cancer is critically affected 
by early detection and treatment; for example, in 2020 
more than 65% of breast cancer patients were diagnosed 
in the early stage of cancer and survived. There has been 
a significant decrease in breast cancer-related mortality 
in the United States between 1975 and 2000, and this is 
attributed to continued improvement in both screening 
mammography and treatment [4,5].

The clinical cure rate of breast cancer is highly opti-
mistic and exceeds 90% if diagnosed in the early stage, 
and this rate decreases as the disease progresses, ranging 
from 50% to 70% in the middle stage, while treatment is 
typically not effective in the late stage [3].

Different breast cancer imaging modalities such as 
mammogram, US, MRI, and histopathological imaging 
can be used to detect and analyse the key features affecting 
the diagnosis and treatment.

Mammography represents the mainstay of breast 
cancer screening and a significant method for the detec-
tion and staging of breast cancer, evaluation of treatment 
efficacy, and follow-up examination. Mammography 
screening is one of the most widely used modalities for 
early breast cancer detection, and it has been shown to 
decrease mortality in multiple randomised clinical trials. 
Despite this, its performance is often unsatisfactory, with 
lower sensitivity (i.e. missing one in 8 cancers during in-
terpretation) and very high false positive rates (i.e. < 30% 
of biopsies are malignant). Approximately 9-10% of the  
40 million US women who undergo routine breast screen-
ing each year are recalled for additional diagnostic imag-
ing; only 4% to 5% of women recalled are ultimately diag-
nosed as having breast cancer, and because of the downfall 
of mammography the need for other adjuvant imaging 
modalities is increased [2,6,7].

Radiologists view and interpret breast images pro-
duced by these modalities and use them for diagnosis. 
Analysing breast images remains difficult due to the 
high heterogeneity of breast tumours and the long hours 
worked by radiologists. Its benefit is dependent on sub-
jective human interpretation to maximally extract all 
diagnostic information from the acquired images, and 
this can lead to misjudgement and misdiagnoses, which 
results in lower cancer detection sensitivity and specificity 
and large inter-reader variability. Thus, utilisation of new 
automatic methods to analyse all kinds of breast screen-
ing images to assist radiologists in interpreting images 
is required. To help overcome these clinical challenges, 
researchers have made great efforts to develop computer- 
aided detection and/or diagnosis (CAD) schemes of breast 
images to provide radiologists with decision-making 
support tools [4].

Artificial intelligence (AI) provides the capability of 
a computer system to interpret and analyse breast imag-
ing, which can alleviate potential human errors.

AI applications have shown excellent performance in 
various image recognition tasks, and their use in breast can-
cer screening has been explored in numerous studies [3].

Methodology
A systematic literature review was conducted to compare 
the diagnostic performance of AI with that of conventional 
radiologists in detecting breast cancer using mammo-
grams, following the PRISMA guidelines. A meta-analysis 
was performed using Review Manager (RevMan) version 
5.4. Pooled sensitivity and specificity with corresponding 
95% confidence intervals (CIs) were calculated for both 
AI and radiologists. Heterogeneity among studies was as-
sessed using the I² statistic, with values greater than 50% 
indicating substantial heterogeneity. The significance of 
heterogeneity was tested using the c2 with a p-value of less 
than 0.10 (Figure 1).
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Study selection, inclusion, and exclusion criteria
Comprehensive database searches including PubMed, 
Scopus, and Web of Science incorporated keywords such 
as “artificial intelligence”, “radiologists”, “breast cancer”, 
“mammograms”, and “diagnostic accuracy”. All acquired 
studies from the search were integrated into Rayyan for 
subsequent analysis and deduplication, then they were 
screened and reviewed by title, abstract, and full text 
screening. Inclusion and exclusion criteria were predeter-
mined. Studies were selected if they included the following:
•	 comparison of AI systems to radiologists in interpret-

ing mammograms;
•	 sensitivity and specificity data;
•	 were published in peer-reviewed journals;
•	 involved human subjects.

Extracted data included study characteristics, non-
English language-based articles, duplicated studies, book 

chapters, conference abstracts, studies employing animal 
subjects, or studies with no relevant data.

Results
This systematic review and meta-analysis included 8 stud-
ies with data from a total of 120,950 patients (Tables 1  
and 2). Regarding the sensitivity of AI, the pooled analysis 
of 6 studies with sensitivities ranging from 0.70 to 0.89 
yielded a sensitivity of 0.85 (95% CI: [0.79–0.89]) (Fig-
ure 2). On the other hand, the sensitivity of radiologists 
ranged from 0.63 to 0.85 with an overall sensitivity of 0.77 
(95% CI: [0.69–0.83]) (Figure 3). Significant heterogeneity 
was detected in both cases (I2 > 90%, p < 0.01). 

As for specificity, the radiologist and AI groups had 
closer results. The pooled specificity of AI was 0.89  
(95% CI: [0.76–0.95]) ranging from 0.77 to 0.99 in  
6 studies (Figure 4), whereas for the radiologists it was 

Table 1. Baseline table for the included studies

Authors, years [Ref.] n.e SnAI SpAI AUCAI n.c SnRad SpRad AUCRad

Kim et al., 2020 [17] 160 88.75 82 0.94 75.27 71.61 0.81

Watanabe et al., 2019 [19] 90 0.84 0.814

Salim et al., 2020 [18] 739 86.70 93 85.00 98.50

Rodriguez Ruiz et al., 2019 [19] 2652 0.84 0.814

Rodriguez Ruiz et al., 2018 [24] 240 0.86 79 0.89 83.00 77.00 0.87

Lee et al., 2020 [22] 100 87.00 79 0.92 62.90 68.70 0.748

Akselrod-Balin et al., 2019 [23] 2548 87.00 77 0.91

Lauritzen et al., 2022 [21] 11,4421 69.70 99 70.80 98.10

Figure 1. Flow chart of the studies selection process
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Table 2. Demographic data of the included studies

Population Women undergoing mammography

Index tests AI and radiologists (ref: histopath diagnosis)

Target Early breast CA

Study: Author, year [Ref.] No of pts Outcomes

SnAI Rad SpAI Rad AUCAI Rad

Kim, 2020 [17] South Korea 
data sets

Total 320 (n = 160) 0.959 0.81

0.97

US data set 0.953

UK data set 0.938

Reader study 88.75 75.27 81.87 71.61 0.94

Watanabe, 2019 [19] Total 122 (n = 90) 0.84 0.814

0.6639 0.759

Salim, 2020 [18] Overall Total 113,663 (n = 739) 86.7 85 92.5 98.5

1 81.9 77.4 96.6 96.6 0.956

2 67 80.1 96.6 97.2 0.922

3 67.4 96.7 0.92

Dembrower, 2020 [13] Total 7364 (n = 547)

Rodriguez Ruiz, 2019 [16] Overall Total 1393 (n = 499) 0.84 0.814

1 0.85 0.84 0.49 0.783 0.769 (0.698, 0.840)

2 N/A N/A N/A 0.915 0.907 (0.854, 0.961)

3 0.8 0.77 0.79 0.879 0.858 (0.814, 0.901)

4 0.85 0.77 0.67 0.85 0.815 (0.767, 0.864)

5 0.86 0.82 0.54 0.825 0.787 (0.732, 0.841)

6 0.81 0.83 0.51 0.796 0.803 (0.763, 0.843)

7 0.86 0.84 0.68 0.852 0.860 (0.831, 0.889)

8 0.75 0.76 0.75 0.817 0.808 (0.752, 0.859)

9 0.81 0.83 0.73 0.861 0.841 (0.785, 0.897)

Sickles, 2002 [25]

Rodriguez Ruiz, 2018 [24] 0.86 83 79 77 0.89 0.87

Lee, 2022 [23] Overall Total 200 (n = 100) 87 62.9 79 68.7 0.915 0.748

Akselrod-Balin, 2019 [22] 87 77.3 0.91

Lauritzen, 2022 [21] 69.7 70.8 98.6 98.1

Study AI sensitivity      95% CI
Kim et al., 2020 0.89 [0.83–0.93]

Salim et al., 2020 0.87 [0.84–0.89] 

Rodriguez Ruiz et al., 2018 0.86 [0.81–0.90] 

Lee et al., 2020 0.87 [0.79–0.93]

Akselrod-Balin et al., 2019 0.87 [0.86–0.88] 

Lauritzen et al., 2022 0.70 [0.69–0.70] 

Random effects model 0.85 [0.79–0.89] 

 0.6 0.7 0.8 0.9 1
Sensitivity 

Heterogeneity: I2 = 99%, t2 = 0.1801, p < 0.01 

Figure 2. The sensitivity of artificial intelligence (AI)
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Study Radiologists sensitivity 95% CI
Kim et al., 2020 0.75 [0.68–0.81]

Salim et al., 2020 0.85 [0.82–0.87] 

Rodriguez Ruiz et al., 2018 0.83 [0.78–0.87] 

Lee et al., 2020 0.63 [0.53–0.72]

Lauritzen et al., 2022 0.71 [0.71–0.71] 

Random effects model 0.77 [0.69–0.83] 

 0.5 0.6 0.7 0.8 0.9 1

Sensitivity 

Heterogeneity: I2 = 95%, t2 = 0.1688, p < 0.01 

Study AI specificity 95% CI
Kim et al., 2020 0.82 [0.75–0.88]

Salim et al., 2020 0.93 [0.90–0.94] 

Rodriguez Ruiz et al., 2018 0.79 [0.73–0.84] 

Lee et al., 2020 0.79 [0.70–0.87]

Akselrod-Balin et al., 2019 0.77 [0.76–0.79]

Lauritzen et al., 2022 0.99 [0.99–0.99] 

Random effects model 0.89 [0.76–0.95] 

 0.6 0.7 0.8 0.9 1
Specificity 

 Heterogeneity: I2 = 100%, t2 = 1.1826, p < 0

Figure 3. The sensitivity of radiologists

Figure 4. The pooled specificity of artificial intelligence (AI)

Study Radiologists specificity 95% CI
Kim et al., 2020 0.72 [0.64–0.79]

Salim et al., 2020 0.99 [0.97–0.99] 

Rodriguez Ruiz et al., 2018 0.77 [0.71–0.82] 

Lee et al., 2020 0.68 [0.58–0.77]

Lauritzen et al., 2022 0.98 [0.98–0.98] 

Random effects model 0.90 [0.71–0.97] 

 0.6 0.7 0.8 0.9 1
Specificity 

 Heterogeneity: I2 = 99%, t2 = 2.3041, p < 0.01 

Figure 5. The pooled specificity of radiologists

0.90 (95% CI: [0.71–0.97]) with a range of 0.68 to 0.99 in  
5 studies (Figure 5). Significant heterogeneity was detect-
ed in both cases (I2 > 90%, p < 0.01).

Estimating the area under the curve (AUC) for both 
AI and radiologists revealed a beneficial effect of AI with 

a pooled AUC of 0.89 (95% CI: [0.86–0.92]) with signifi-
cant heterogeneity (I2 = 92%, p < 0.01) (Figure 6) com-
pared to 0.82 (95% CI: [0.80–0.83]) for the radiologists, 
without significant heterogeneity (I2 = 48%, p = 0.10) 
(Figure 7).
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Study AI AUC 95% CI
Kim et al., 2020 0.94 [0.89–0.97]

Watanabe et al., 2019 0.84 [0.75–0.91] 

Rodriguez Ruiz et al., 2019 0.84 [0.83–0.85] 

Rodriguez Ruiz et al., 2018 0.89 [0.85–0.93] 

Lee et al., 2020 0.92 [0.85–0.96]

Akselrod-Balin et al., 2019 0.91 [0.90–0.92] 

Random effects model 0.89 [0.86–0.92] 

 0.75 0.80 0.85 0.90 0.95 1
AUC 

Heterogeneity: I2 = 92%, t2 = 0.0968, p < 0.01

Study Rad AUC 95% CI
Kim et al., 2020 0.81 [0.74–0.87]

Watanabe et al., 2019 0.81 [0.71–0.89] 

Rodriguez Ruiz et al., 2019 0.81 [0.80–0.83] 

Rodriguez Ruiz et al., 2018 0.87 [0.82–0.91] 

Lee et al., 2020 0.75 [0.65–0.83]

Random effects model 0.82 [0.80–0.83] 

 0.6 0.7 0.8 0.9 1
AUC 

Heterogeneity: I2 = 48%, t2 = 0, p < 0.10

Discussion
This meta-analysis of 8 studies involving 120,950 patients 
compared the diagnostic performance of AI and radio-
logists, demonstrating that AI exhibits a higher pooled 
sensitivity (0.85 vs. 0.77 for radiologists) and similar 
speci ficity (0.89 vs. 0.90 for radiologists), with significant 
variability observed in both sensitivity and specificity 
across studies. AI also showed a superior pooled AUC of 
0.89 compared to 0.82 for radiologists, indicating better 
overall diagnostic accuracy despite variability, suggesting 
AI’s potential to surpass human radiologists in certain 
contexts.

Similarly, Al-Karawi et al. [3] suggest that AI tech-
niques, particularly deep learning (DL), are increasingly 
applied in various medical fields, including breast imag-
ing, exhibiting robust performance in tasks such as image 
recognition. This enhances prospects for applications in 
in vitro diagnosis, rehabilitation, medical imaging, and 
prognosis. They also found that despite challenges such 
as multitasking limitations, ongoing advancements in  
DL-based systems for breast imaging, such as digital 
breast tomosynthesis and ultrasound, show rapid deve-

lopment. These systems aid in detecting, classifying, and 
predicting breast diseases, thereby improving diagnostic 
efficiency and treatment efficacy. Furthermore, AI’s capa-
bilities offer fast computation, repeatability, and objective 
data analysis, reducing medical professionals’ workload 
and enhancing diagnostic accuracy and treatment out-
comes [2,8].

Aligning with these results, a study conducted by 
Zhang et al. [9] supports the use of AI for breast cancer 
diagnosis through dual-modal deep polynomial networks, 
which proved superior to other methods in enhancing 
breast tumour classification performance. This suggests 
that AI-based techniques can approach the accuracy 
of breast tumour biopsies, proposing a dual-modal AI 
framework for diagnosis. However, experimental find-
ings highlight dual-modal deep polynomial networks as 
the most effective framework, indicating AI’s potential for 
streamlined breast tumour classification.

Similar results were found by Cè et al. [10], who 
highlighted significant advancements in AI-based tools 
for personalised patient management. The integration of 
AI into clinical workflows is expected to benefit women,  
radiologists, and healthcare systems by improving diag-

Figure 6. The area under the curve (AUC) for artificial intelligence

Figure 7. The area under the curve (AUC) for radiologists (Rad)
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radiologists in enhancing diagnostic accuracy and ef-
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practice. Further research efforts should prioritise the re-
finement of AI algorithms, validation of their clinical util-
ity, and exploration of optimal strategies for integrating AI 
into routine clinical workflows to maximise its potential 
impact on patient care.
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