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Abstract
Purpose: Ovarian cancer is the fifth fatal cancer among women. Positron emission tomography (PET), which offers 
detailed metabolic data, can be effectively used for early cancer screening. However, proper attenuation correction 
is essential for interpreting the data obtained by this imaging modality. Computed tomography (CT) imaging is 
commonly performed alongside PET imaging for attenuation correction. This approach may introduce some issues 
in spatial alignment and registration of the images obtained by the two modalities. This study aims to perform PET 
image attenuation correction by using generative adversarial networks (GANs), without additional CT imaging. 

Material and methods: The PET/CT data from 55 ovarian cancer patients were used in this study. Three GAN architec-
tures: Conditional GAN, Wasserstein GAN, and CycleGAN, were evaluated for attenuation correction. The statistical 
performance of each model was assessed by calculating the mean squared error (MSE) and mean absolute error 
(MAE). The radiological performance assessments of the models were performed by comparing the standardised 
uptake value and the Hounsfield unit values of the whole body and selected organs, in the synthetic and real PET 
and CT images.

Results: Based on the results, CycleGAN demonstrated effective attenuation correction and pseudo-CT generation, 
with high accuracy. The MAE and MSE for all images were 2.15 ± 0.34 and 3.14 ± 0.56, respectively. For CT recon-
struction, such values were found to be 4.17 ± 0.96 and 5.66 ± 1.01, respectively. 

Conclusions: The results showed the potential of deep learning in reducing radiation exposure and improving the quality 
of PET imaging. Further refinement and clinical validation are needed for full clinical applicability.
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Introduction
Ovarian cancer is known as the seventh most common 
cancer and the fifth cause of cancer death among women. 
Approximately 239,000 new cases of ovarian cancer are di-
agnosed annually. Ovarian cancer is often diagnosed at ad-
vanced stages because of the subtle nature of ovarian cancer 

symptoms and the lack of effective early screening meth-
ods compared to other cancers such as colorectal, breast, 
and prostate cancers. In ovarian cancer patients with late 
diagnosis, the treatment focus is shifted to improving the 
quality of life and life expectancy [1,2]. Positron emis-
sion tomography (PET) is an effective imaging modality 
for obtaining detailed tissue metabolic information [3,4]. 
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Gamma radiation attenuation correction in tissues is nec-
essary for PET imaging. Such corrections are performed 
by anatomical imaging such as computed tomography 
scans. Hybrid PET-computed tomography (CT) imag-
ing allows precise localisation of malignant lesions and 
improved diagnostic accuracy. Such imaging approaches, 
while effective, increase radiation exposure to patients [5]. 
No regulatory dose limits are considered for patients; the 
patient dose management should be based on the 2 ra-
diation protection principles of justification and optimi-
sation. Based on these principles, the radiation dose to 
the patients should be reduced to as low as reasonably 
achievable (ALARA). Therefore, efforts should be made 
to reduce the radiation doses to patients while obtaining 
desirable image quality [6].

Recently, the use of PET imaging has been increased 
in the diagnosis of different cancers. Son et al. [7] showed 
the superiority of PET imaging over anatomical 3D im-
aging modalities like magnetic resonance imaging (MRI) 
and CT in early-stage diagnosis. The efficacy of PET imag-
ing in detecting ovarian cancer recurrence, especially in 
patients with elevated CA-125 levels, was investigated by 
Khiewvan et al. [8]. They showed that PET/CT and PET/
MR imaging have high sensitivity rates for ovarian cancer 
recurrence detection. Engbersen et al. [9] reported higher 
accuracy of PET/CT and PET/MR in staging ovarian can-
cer and detecting small-size tumours compared to other 
imaging modalities. Artificial intelligence, especially deep-
learning, has recently been used to improve image qual-
ity in different imaging modalities [10-12]. Xu et al. [13] 
reviewed the use of AI in the detection accuracy of ovarian 
cancer. Lu et al. [14] pointed out the increasing applica-
tion of AI in tumour detection and for segmentation in 
diagnostic radiology. Matsubara et al. [15] showed that 
convolutional neural networks (CNNs) and generative ad-
versarial networks (GANs) can be used as predominant 
AI networks in segmentation and for attenuation correc-
tion in PET images.

However, the challenges in the use of AI in PET-CT 
image processing remain. Sadaghiani et al. [16] indicated 
the need for further refinement before AI adoption in 
clinical applications because of inconsistent reproduc-
ibility. Lee et al. [17] hypothesised that AI could improve 
PET attenuation correction and proposed that MRI-based 
corrections have better performance than CT-based ones. 
Meanwhile, Yang et al. [18] showed the potential of deep 
CNN for converting raw PET images to attenuation 
corrected images with high accuracy but without clini-
cal validation. GANs have been shown to be effective in  
the reconstruction of medical images with high accuracy. 
Liu et al. [19] and Roa et al. [20] successfully made pseudo- 
CT images from non-attenuation-corrected PET images 
that eliminate the need for repeating CT scans. Sorin et 
al.’s [21] and Matsubara et al.’s [22] latest systematic re-
views have also shown how GANs have been useful in 
clinical imaging, particularly for generating high-quality 

CT and PET/CT images. Fukui et al. [23] and Hu et al. [24] 
demonstrated that GANs could produce accurate pseudo-
CT images as well as attenuated PET images; these results 
were extended by Xiaofeng et al.’s [25] work showing cycle 
GANs being used to generate more precise attenuation-
corrected PET images from raw data. This study aims to 
use the GANs to perform the attenuation correction in 
PET images, without the requirement for further anatomi-
cal imaging. The accuracy of deep learning techniques in 
synthesising PET/CT images, i.e. reconstructing atten-
uation-corrected PET images and creating pseudo-CT  
images from raw PET data, without the need for concur-
rent CT scans, is investigated in this study. 

Material and methods

Patient selection and image acquisition

The approval of the Ethics Committee of Shiraz University 
was obtained before the data collection to ensure com-
pliance with ethical standards in research (approval ID: 
IR.US.REC.1401.001). PET/CT images were collected 
from ovarian cancer patients at Kowsar Hospital in Shiraz, 
which is the only centre equipped with a PET/CT device 
in the south of Iran. 

Patients had to sign informed consent forms and meet 
specific requirements to be included in the study. The study 
population consisted of patients diagnosed with ovarian 
cancer, either pre- or post-surgery. Partici pants were re-
quired to have a complete set of imaging data available, 
which included uncorrected PET images, attenuation-
corrected PET images, CT scans, and PET/CT images. 
Additionally, the study included only those patients for 
whom essential information was accessible, such as height, 
weight, and blood sugar levels recorded prior to imaging. 
Patients who did not fit the above-mentioned requirements 
were not allowed to participate in the trial. PET-CT data 
collection was performed from April 2019 to June 2024. 
Sixty-one cases were prepared, among which 55 met the 
inclusion criteria. The data which were prepared included 
12,366 uncorrected PET pictures, 12,366 corrected PET im-
ages, 16,402 CT scan images, and 12,366 PET/CT images. 

The images were standardised and classified into sepa-
rate folders to be used as the input for the training of the 
deep networks. Images from 45 patients were used to train 
the networks, while images from the 10 patients were re-
served for the test set.

Network design and implementation

Three different architectures of GANs were evaluated 
in this study: conditional GAN [26], Wasserstein GAN 
(wGAN) [27], and cycle GAN [28]. These networks were 
designed to optimise the reconstruction of images from 
raw PET data to produce both attenuation-corrected PET 
images and pseudo-CT images. For the first 2 codes, we 
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utilised previously established architectures. However, 
for the CycleGAN, we implemented our own proprietary 
architecture. The cycle GAN architecture employed con-
sisted of 2 main components: the discriminator network 
and the generator network. The discriminator network 
included 5 deep convolutional layers with the follow-
ing architecture: 64-128-256-512-512, utilising the leaky 
ReLU activation function. The generator network com-
prised 7 deep convolutional layers arranged in a U-Net 
architecture with layers structured as 64-128-256-512-
256-128-64, using the ReLU activation function for most 
layers and the tanh activation function for the output layer 
to standardise pixel values between 0 and 1. The genera-
tor network of the CycleGAN model employed a ResNet 
block architecture. Each ResNet block consisted of two 
3 × 3 convolutional layers with instance normalisation 
and ReLU activation. The output of the second convolu-
tion was then added to the input of the block, forming 
a skip connection. A total of 9 such ResNet blocks were 
used within the generator network. The network trained 
on real and synthetic images in a cyclical manner, with 
error functions such as mean squared error (MSE) and 
mean absolute error (MAE) used for evaluation. The ini-
tial generator within the cycle GAN was the only trainable 
sub-network, and training continued until a stable train-

ing process was observed or signs of failure emerged. The 
code for our implementations is available at the follow-
ing GitHub repository: https://github.com/NM-DL-M/
OCRE-GAN. Due to ethical considerations, the data used 
in this study cannot be shared. Figure 1 shows the gene-
rator and discriminator architectures of the CycleGAN 
network used in this study.

Key hyperparameters were optimised to enhance 
network performance. We employed an early stopping-
based method to tune the neural network parameters. 
This approach monitored the model’s performance on 
validation data and halted training once improvements 
stabilised, thereby reducing the risk of overfitting and en-
hancing the model’s generalisation capability. The learn-
ing rate was initially set to 0.0001 to ensure stability, with 
separate rates defined for the generator and discriminator. 
The batch size was adjusted to balance the training stabi-
lity and efficiency. Error coefficient weights for MSE and 
MAE were set at 1-5-10-10, respectively, and the number 
of training cycles was determined through initial runs of 
10 epochs for hyperparameter optimisation, followed by 
final training with 50 epochs once optimal parameters 
were identified.

The software tools utilised included Python 3.9 with 
Anaconda and Spyder interface (version 5.2.2) for pro-

Figure 1. The generator and discriminator architectures of the CycleGAN network
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gramming, SPSS v25 for statistical analysis, and 3D-Slic-
er 5.0.3 for image viewing, reviewing, and contouring.  
The network training was conducted on a system equipped 
with an Intel Core i7-11700K processor running at  
3.60 GHz, with 64 GB of RAM, and powered by a GeForce 
RTX 4080 graphics processing unit to handle the compu-
tational demands of the training process.

Image reconstruction and evaluation

Reconstructed images from the test set were processed us-
ing the trained networks. The images were converted to 
DICOM format to facilitate clinical evaluation, ensuring 
the inclusion of necessary metadata. This step was crucial 
for enabling the clinical review of the images by specialists.

The evaluation of reconstructed images included both 
statistical and radiologic criteria. Statistically, the net-
works were assessed based on L1 loss, L2 loss, and gen-
erator loss. These metrics reflect the error rates of the sub-
networks in generating and evaluating images. A stable 
training process is indicated by a gradual reduction in 
these values, although they should not reach zero as per-
sistent zero values suggest a training failure in one of the 
sub-networks. Conversely, a stable and successful train-
ing process is characterised by minimising these values 
while maintaining non-zero oscillations. These errors are 
generally computed using the MAE and MSE functions, 
as shown below:

    (∑n
(i = 1)| yi–xi |)MAE = –––––––––––––––––  (1)              n 

where yi represents the calculated value and xi the ac-
tual value of each pixel.

 1
MSE = – (∑n

(i = 1) (Yi – Ŷi)
2,                 (2)

 n              

where Yi is the calculated value and  is the predicted 
value.

Radiologic evaluation involved calculating the stan-
dardised uptake value (SUV) mean (SUVmean) and SUV 
max (SUVmax) for PET images and comparing the aver-
age Hounsfield unit (HU) values for CT images. SUV is 
a numerical radiological measure indicating the level of 
radiotracer uptake in tissues. Higher SUV values suggest 
greater metabolic activity in the examined area.

 tracer uptake (ROI)
SUV = ––––––––––––––––––––––   × weight (3)
 injected dose

SUVmax represents the highest standardised uptake 
value in an image or entire study, crucial for distinguish-
ing between benign and malignant lesions and comparing 
activity levels in suspicious areas with normal tissue.

For PET images, the SUVmean and SUVmax were calcu-
lated for both real and synthetic images, focusing specifi-
cally on the lungs and liver to assess the accuracy of the 

reconstructions. The evaluation of CT images involved 
comparing the average HU values between real and syn-
thetic images. This comparison was made for the entire 
body, lungs, liver, and bones. However, due to observed 
weaknesses in the network’s ability to reconstruct bone 
structures, specific comparisons for bones were ultimately 
disregarded.

Stable training of the networks was indicated by a gra-
dual decrease in error rates, maintaining an oscillatory be-
haviour above zero. Persistent zero values suggested training 
failure, while successful training was marked by maximum 
reduction in error rates. Significant differences in SUV or 
HU values (p < 0.05) between real and synthetic images in-
dicated weaknesses in the reconstruction network.

To ensure clinical relevance, reconstructed PET/CT 
images were reviewed by a nuclear medicine specialist 
in a single-blind manner. The specialist compared syn-
thetic images with real images to evaluate their diagnos-
tic accuracy. The specialist’s ability to distinguish between 
real and synthetic images was assessed using the c2 test.  
Additionally, the specialist provided reports on the syn-
thetic images, which were compared with real image re-
ports to evaluate the effectiveness of the synthetic images 
in accurately determining malignancy stages and PCI. Re-
ports generated for synthetic images were compared with 
real image reports to assess the clinical applicability and 
accuracy of the synthetic images in diagnostic settings.

Results
In this study, we evaluated the performance of seve-

ral deep learning models for PET attenuation correction, 
focusing on their ability to generate synthetic CT images 
directly from PET data for the conditional GAN. Opti-
mised hyperparameters included a generator learning 
rate of 0.0001, discriminator learning rate of 0.00005, 
and batch size of 1. However, this network suffered from 
convergence failure and overfitting issues, unable to gen-
eralise well to unseen test data despite reasonable train-
ing metrics (L1 loss 0.27 ± 0.06). The Wasserstein GAN 
experienced instability, with training runs failing between 
1 and 3 epochs regardless of hyperparameter tuning at-
tempts. This architecture proved unsuitable for this ap-
plication. Figure 2 shows the visual results of conditional 
GAN and Wasserstein GAN networks.

Among the various models tested, the CycleGAN 
demonstrated superior performance, both statistically 
and radiologically, in comparison to the other networks. 
So, we used it for 2 tasks: 1) correcting attenuation in 
PET images and 2) reconstructing CT images from non-
attenuation corrected PET images. For PET attenuation 
correction, the cycleGAN provided the most promis-
ing results after extensive hyperparameter optimisation.  
The best performance utilized a 5 : 1 ratio of generator to 
discriminator learning rates (0.00025 and 0.00005, respec-
tively) with a batch size of 1. After 17 epochs (74 hours 
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41 minutes), the trained network generated synthetic 
PET images visually similar to real attenuation-corrected  
PET images when tested on the test set. Figures 3 and 4 
show example axial and coronal attenuation corrected 
PET images generated by the CycleGAN network.

For CT reconstruction from non-attenuation-corrected 
PET images using the cycleGAN architecture, extensive 
hyperparameter tuning identified the optimal settings as 
a generator learning rate of 0.0001, discriminator learn-
ing rate of 0.00001, and batch size of 1. After training for  
40 epochs, requiring 122 hours and 42 minutes, the net-
work demonstrated the capability to generate reconstructed 
CT images from input non-attenuation-corrected PET 
data. While achieving reasonable overall image quality, 

the reconstructed CT images exhibited some difficulty 
precisely delineating bony structures compared to ground 
truth CT scans. Representative sample axial and coronal 
views of the network’s reconstructed CT outputs are pro-
vided, juxtaposed with the corresponding reference CT 
ground truth images (Figure 5).

The PET reconstruction accuracy was evaluated using 
MAE and MSE, calculated across 2293 PET images from  
10 different scans. The mean absolute error for the PET 
images was (2.15 ± 0.34), reflecting a reasonable level of 
accuracy in the reconstructed images. The mean squared 
error was (3.14 ± 0.56). While this error is within ac-
ceptable limits compared to related studies, the observed  
increase in error from the training to the testing phase 
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Figure 2. Visual results of Conditional GAN and Wasserstein GAN networks for PET attenuation correction. A) Non-corrected image as network input.  
B) Attenuation-corrected image from network output. C) Target image from ground truth data

 Input Output Target

A B C

Figure 3. Axial images showing: A) the input non-corrected attenuation PET image, B) the attenuation-corrected output from the cycle GAN generator,  
C) the reconstructed primary PET image passed through the entire cycle GAN model from both generators, and D) the target ground truth PET image

A B C D
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Figure 4. Coronal images showing: A) the input non-corrected attenuation PET image, B) the attenuation corrected output from the cycle GAN generator, 
and C) the target ground truth PET image

                                            Input                                                                                                   Output                                                                                                      Target

A B C

          Reconstructed CRT       Ground truth CT

Figure 5. Comparative axial and coronal images of reconstructed CT and ground truth. A) Pseudo-CT images reconstructed from the non-attenuation 
corrected PET input by the CycleGAN network. B) The expected ground truth CT images for comparison

A B
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suggests potential overfitting, requiring further refine-
ment of the network.

The CT image reconstruction performance was also 
evaluated using MAE and MSE. The mean absolute error 
for the CT images was (4.17 ± 0.96), indicating a relatively 
higher error rate than in PET reconstructions, which may 
reflect the complexity of generating CT images from PET 
data alone. The mean squared error was (5.66 ± 1.01), 
suggesting that the CT image generation process requires 
further model optimisation to reduce error and improve 
image quality. Radiological evaluation was performed by 
calculating the SUVmean and SUVmax in the segmented areas 
and the entire image in PET samples, as well as HU levels in 
the whole image and segmented areas in CT images. These 
calculations were statistically analysed using SPSS software 
and t-tests [29]. The results are presented in Table 1.

The synthetic attenuation-corrected PET images 
generally exhibited higher SUV values compared to real 
images. Although this difference was not statistically sig-
nificant for the whole body (p > 0.05), the elevated SUV 
in synthetic images suggests an increased likelihood of 
false positives. While the liver’s high metabolic activ-
ity could explain the higher SUV, synthetic images still 
presented a higher mean uptake in the liver. This differ-
ence was also not statistically significant. The lungs, with 
low tissue density and air saturation (particularly dur-
ing breath-hold imaging), generally show lower radio-
active uptake, a pattern observed in both synthetic and 
real images, with no significant statistical difference in 
mean SUV between these images. A closer examination 
of SUVmax shows intriguing patterns. In patients, SUVmax 
typically corresponds to regions affected by malignancy, 
and thus it is expected to be comparable across the whole 
body and malignant sites. While the whole-body SUVmax 
might occasionally register in the kidneys, ureters, or 
bladder due to radiotracer accumulation, no significant 
differences in maximum uptake between synthetic and 
real images were observed. A similar pattern was noted 
in the liver, a common site for ovarian cancer metastasis. 
The expected higher maximum uptake due to metastases 

was not statistically significant between real and synthetic 
liver images. However, the lungs displayed a significant 
difference in maximum uptake between real and synthetic 
images. Given that lungs are potential but late-stage me-
tastasis sites for ovarian cancer, the observed correlation 
and high standard deviation in these values across both 
synthetic and real samples, with a small sample size and 
few lung metastasis cases, warrant further investigation 
with a larger sample size.

Radiological evaluation was also based on HU levels 
in the reconstructed CT images. This evaluation aimed to 
calculate the HU levels for the whole body, lungs, bone, 
and liver in real and synthetic images and compare the 
results statistically. Unfortunately, the reconstructed CT 
images did not have the necessary quality for contouring 
the liver and bone, as evident in the reconstructed coronal 
image. The results are presented in Table 2.

In the reconstructed CT images, the lungs, as expected, 
showed negative HU levels due to air presence, and 
the statistical analysis between real and synthetic im-
ages showed no significant difference in lung HU levels.  
The same applies to the whole-body HU levels. The clear 
visual differences between reconstructed and real images, 
despite the closeness of the HU levels, suggest the inade-
quacy of this metric in assessing synthetic image accuracy.

Discussion 
In recent years, there has been a tremendous increase 

in studies related to the applications of AI across different 
scientific disciplines, and radiology is no exception. From 
assisting in the diagnosis of potentially dangerous lesions 
to contouring and reproducing images, AI and deep 
learning have become vital tools in radiology, which, 
considering their high growth potential, will undoubtedly 
revolutionise this field [30,31]. Because of the PET scan’s 
strong metabolic imaging capabilities, it is now one of the 
best imaging techniques for detecting and tracking cancer.  
The number of PET scans conducted has increased re-
cently due to the imaging method’s improved accessibility 

Table 1. Radiological examination results on attenuation-corrected synthetic images

Factor SUVmean test SUVmean true p-value SUVmax test SUVmax true p-value

Whole body 1.94 ± 0.43 1.62 ± 0.36 0.36 14.81 ± 2.81 13.23 ± 2.51 0.26

Liver segmentation 6.12 ± 0.91 5.66 ± 0.64 0.42 14.20 ± 2.14 12.80 ± 2.32 0.41

Lung segmentation 0.96 ± 0.16 0.88 ± 0.16 0.11 6.22 ± 2.02 4.56 ± 1.68 0.04

Table 2. Radiological examination results on pseudo-CT synthetic images

HU mean test HU mean real p-value

Whole body 186.8 ± 14.9 168 ± 13.9 0.45

Liver segmentation – 63.4 ± 7.61 –

Lung segmentation 73.1 ± –496.6 56.4 ± –439 0.23

Bone segmentation – – –
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and lower costs [32]. Naturally, the surge in this imaging 
technique, coupled with advancements in AI, has motivat-
ed researchers to utilise AI to enhance various aspects of 
PET imaging [33,34]. One of the concerns for researchers 
and clinical staff is the high radiation exposure involved in 
this imaging technique. Each PET scan not only exposes 
the patient to radiation due to the need for a radioactive 
tracer but also doubles the radiation exposure with the 
simultaneous CT scan performed to evaluate the anatom-
ical lesions and correct the attenuation in PET images. 
According to the ALARA principle, radiation exposure 
should be minimised to the necessary amount. This is es-
pecially important for patients with malignancies, who are 
likely to undergo repeated imaging and might receive high 
doses of radiation for radiotherapy. Thus, researchers have 
been seeking ways to reduce radiation exposure during 
PET/CT, and the emergence of advanced AI techniques is 
one of the solutions they have focused on. The attenuation 
correction process is typically done with anatomical imag-
ing performed simultaneously with PET imaging. 

In this study, 3 different network architectures were 
evaluated for the attenuation correction of PET images, 
to select and optimise an AI network for this process, 
and to evaluate the ability of such a network to produce 
pseudo-CT and eventually a complete PET/CT study us-
ing raw PET images. Although such a study is not unique 
in every aspect, it is necessary considering that no similar 
study has been conducted in Iran. Contrary to the study 
by Keisuke Matsubara et al. [15], which identified condi-
tional GANs as effective and powerful in the reproduction 
of medical images, the conditional GAN in this study, al-
though successful in producing high-quality attenuation-
corrected images during training, was found to be ineffec-
tive on test data due to overfitting.

Similarly, contrary to the study by Hu et al. [24], the 
Wasserstein GAN, despite multiple confirmations of the 
correctness of the code and input data, failed to converge 
during training in this study’s dataset. This raises ques-
tions about the performance of the Wasserstein network 
and, given its high complexity and instability in train-
ing, suggests a need for structural adjustments and more 
precise hyperparameter tuning. Nevertheless, the strong 
theoretical performance of Wasserstein networks warrants 
further investigation in a new study. Among the networks 
tested in this study, only the cycle GAN successfully pro-
duced clinically acceptable images. The MAE and MSE 
values for the optimised network in the attenuation-cor-
rected PET images were calculated as 0.34 ± 2.15 and 0.56 
± 3.14, respectively. Considering the pixel value range of 
0 to 255 (256 levels), this indicates an accuracy of about 
99%. Radiologic evaluations in terms of SUV showed no 
significant statistical differences between the real and syn-
thetic images except for SUVmax in the lungs. The values 
obtained were significantly higher compared to studies by 
Fukui et al. [23] and Xiaofeng et al. [25]; however, the 
reconstructed PET images are not without flaws.

The designed network processes its input and output 
images in 2D slices of the body, resulting in error values 
based on comparing 2 transverse slices. However, exam-
ining the coronal reconstructions shows that despite high 
similarity in transverse slices, the coronal slices exhibit 
some SUV inhomogeneity. To address the challenge of 
ensuring homogeneity in medical imaging, 2 solutions are 
proposed. First, designing a 3D network would necessitate 
a larger dataset and more powerful hardware but could 
effectively eliminate the stair-step appearance between 
slices and ensure uniformity in all 3 dimensions. Second, 
standardising the SUV based on each slice involves ini-
tially training the network to recognise the general body 
area of the input image and then adjusting the bright-
ness according to the average normal SUV for that spe-
cific region. Although this method theoretically could alter 
medical data, it remains a viable approach because most 
medical images exhibit minimal deviations from normal 
samples. This strategy can help distribute the SUV more 
reasonably across images, addressing issues such as false 
increases in uptake in certain areas, like the cervical ver-
tebrae, and decreased uptake in regions like the brain.  
The reconstruction of CT scan images and the produc-
tion of pseudo-CT were also tested in this study, which 
was more challenging than attenuation-corrected images. 
Training the optimised cycle GAN for this purpose was less 
stable than for attenuation correction, and even under opti-
mal conditions, the accuracy of CT image reproduction still 
needed improvement. Nevertheless, the statistical analysis 
of this network showed MAE and MSE values of 0.96 ± 
4.17 and 1.01 ± 5.66, respectively (equivalent to about 2% 
error, considering a 256-unit pixel range), slightly higher 
than the study by Fang Liu et al. [19]; however, their study 
focused solely on head and neck reconstruction. There 
was no significant radiologic difference in HU levels for 
the whole body and lungs. Nonetheless, the reconstructed 
images were average for internal organs such as the liver, 
intestines, muscles, and especially bones. To address the is-
sue, 2 solutions are suggested. First, using organ-specific 
networks involves training and optimising a network sepa-
rately for each body area, which can reduce the training 
load, enhance flexibility in hyperparameter tuning, and 
allow for the use of larger training datasets. Second, incor-
porating a contouring network addresses the challenge of 
bone reconstruction in producing pseudo-CT images by 
overlaying pre-prepared CT images on PET images to con-
tour hypothetical bone areas. The resulting image serves as 
a secondary condition during the training phase, alongside 
the uncorrected PET image, thereby improving the accu-
racy and quality of the reconstructed images.

Overall, as stated in the study by Sadaghiani et al. [16], 
although the results of these networks hold a bright fu-
ture, they still need qualitative improvements and further 
study before clinical application. Positive statistical and 
radiologic results, while encouraging, cannot replace the 
accurate clinical appearance. It is clear that despite the 
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astonishing advancements in AI, its application in clini-
cal fields, given the high sensitivity of this area, is only 
possible after ensuring precise performance and patient 
safety. It should be noted that alongside the provided sug-
gestions, increasing the number and diversity of training 
data, access to more powerful hardware systems for di-
versifying hyperparameter tests, access to higher-quality 
images from stronger imaging devices, and testing other 
networks and architectures can significantly enhance the 
quality and accuracy of output images and pave the way 
for their clinical use.

Conclusions
This study highlights the successes and challenges of 

utilising various AI network architectures in attenuation 
correction in PET-CT. Based on the results, cycle GAN 
was shown to be effective in producing clinically accept-
able images; however, several problems remain, such as 
inhomogeneities and low accuracy in certain organ re-

constructions, suggest that there is a need for improve-
ment. Further studies should be performed with stron-
ger computational resources, increased data variability,  
3D imaging network inspection, and the development 
of organ-specific models to improve the robustness and 
clinical relevance of AI-driven PET imaging solutions. 
These efforts will ultimately lead to more accurate diag-
nosis tools with fewer risks in medical imaging.
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