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Abstract
Purpose: Tuberculosis (TB) continues to be a major cause of death from infectious diseases globally. TB is treatable 
with antibiotics, but it is often misdiagnosed or left untreated, particularly in rural and resource-constrained regions. 
While chest X-rays are a key tool in TB diagnosis, their effectiveness is hindered by the variability in radiological 
presentations and the lack of trained radiologists in high-prevalence areas. Deep learning-based imaging techniques 
offer a promising approach to computer-aided diagnosis for TB, enabling precise and timely detection while alle
viating the burden on healthcare professionals. This study aims to enhance TB detection in chest X-ray images by 
developing deep learning models. We have observed upper and lower lobe consolidation, pleural effusion, calcifica-
tion, cavity formation and military nodules. A proposed preprocessing technique has been also introduced in our 
work based on gamma correction and gradient based technique for contrast enhancement. We leverage the Res-UNet 
architecture for image segmentation and introduce a novel deep learning network for classification, targeting im-
proved accuracy and precision in diagnostic performance.

Material and methods: A Res-UNet segmentation model was trained using 704 chest X-ray images sourced from the 
Montgomery County and Shenzhen Hospital datasets. Following training, the model was applied to segment lung 
regions in 1400 chest X-ray scans, encompassing both TB cases and normal controls, obtained from the National 
Institute of Allergy and Infectious Diseases (NIAID) TB Portal program dataset. The segmented lung regions were 
subsequently classified as either TB or normal using a deep learning model. A gradient based technique was used 
for contrast enhancement by capturing intensity changes in image by comparing each pixel with its neighbour with 
pyramid reduction unique mapping and histogram matching along with gamma correction is used. This integrated 
approach of segmentation and classification aims to enhance the accuracy and precision of TB detection in chest 
X-ray images. Classification of segmented images was done using customised convolutional neural network, and 
visualisation was done using Grad-CAM.

Results: The Res-UNet model demonstrated excellent performance for segmentation, achieving an accuracy of 
98.18%, recall of 98.40%, precision of 97.45%, F1-score of 97.97%, Dice coefficient of 96.33%, and Jaccard index of 
96.05%. Similarly, the classification model exhibited outstanding results, with a classification accuracy of 99.45%, 
precision of 99.29%, recall of 99.29%, F1-score of 99.29%, and an AUC of 99.9%. Enhanced gradient based method 
showed ambe of 16.51, entropy of 6.7370, CII of 86.80, psnr of 28.71, ssim of 86.83 which are quite satisfactory.

Conclusions: The findings demonstrate the efficiency of our system in diagnosing TB from chest X-rays, potentially 
surpassing clinician-level precision. This underscores its effectiveness as a diagnostic tool, particularly in resource- 
limited settings with restricted access to radiological expertise. Additionally, the modified Res-UNet model demon-
strated superior performance compared to the standard U-Net, highlighting its potential for achieving greater dia
gnostic accuracy.
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Introduction
Tuberculosis (TB), caused by the bacterium Mycobacte­
rium tuberculosis, is a highly infectious disease that pri-
marily targets the lungs but can also affect other organs 
such as the kidneys, spine, and brain. The disease spreads 
through airborne particles expelled when an infected 
person coughs, sneezes, or talks, contributing to its high 
transmissibility. This study presents a novel approach to 
improving TB detection by leveraging chest X-ray (CXR) 
image datasets. The proposed method, TbCNN-net, in-
tegrates semantic segmentation with an adaptive convo-
lutional neural network (CNN) architecture to enhance 
diagnostic precision. An India “TB Report 2024” by  
the Ministry of Health and Family Welfare reported esti
mated TB case numbers of 27.8 lakhs with 25.5 lakh in 
2024, showing an increase from 24.2 lakh cases in 2023. 
There are various factors of risk of TB like undernourish-
ment, diabetes, use of alcohol, HIV, smoking, etc. Ahmed 
et al. [1] introduced TB U-net with an attention mecha-
nism for efficient segmentation of lungs. They also pro-
posed a densenet-169 CNN for accurate classification of 
TB, COVID-19, and pneumonia. Nafisah [2] proposed 
TB detection by using 9 different CNN models with  
U-net segmentation and EffcientNetB3, achieving higher 
accuracy of 99.1% with receiver operating characteristic 
(ROC) of 99.9%, recall of 98.8%, precision of 98.8%, and 
f1_score of 98.8%. Also, it involved different visualisation 
techniques like Grad-CAM and t-SNE [3]. Sharma et al. [4] 
proposed an U-Net model for segmentation with accu-
racy of 96.35%, Jaccard index of 90.38%, and DCE coef-
ficient of 94.88%, and a classification model of Xception 
with accuracy of 99.29%, precision of 99.30%, and recall of 
99.29%. They also used Grad-CAM to show the heatmap 
pattern and developed a framework with 9 different CNN 
models, among which CheXNet was the best perform-
ing model with accuracy of 96.47%, sensitivity of 98.56%, 
precision of 98.57%, and f1_score of 98.56%. Rajaraman 
et al. [5] trained X-rays using a U-Net model on TBX11 
CXR dataset. Shallow models like VGG16 and VGG-19 
were used for classification with staple consensus region 
of interest for region localisation on Montgomery TB and 
Shenzhen TB datasets [6]. This study trained and evaluated 
10 different deep CNNs for distinguishing TB cases from 
normal cases. The models included ResNet50, ResNet101, 
ResNet152, InceptionV3, VGG16, VGG19, DenseNet121, 
DenseNet169, DenseNet201, and Mobile Net. The ap-
proach presented here leverages histogram-matched CXR 
images, eliminating the need for object segmentation of re-
gions of interest. This approach enhances the accuracy and 
detection performance of CNN models for TB identifica-
tion by incorporating histogram matching with CXR imag-
es. Chavan et al. [7] proposed Res-UNet++ outperformed 
U-Net and Res Net architectures, achieving superior 
evaluation metrics, including a validation Dice coefficient 
of 96.36%, validation mean IoU of 94.17%, and valida-

tion binary accuracy of 98.07% [8]. A novel algorithm has 
been developed to refine segmented masks, enhancing  
final accuracy, alongside an efficient fuzzy inference system 
for more weighted activity assessment. Dao and Lin [9] 
gives a comparison between  U-Net, UNet++, and Trans
UNet+ [10]. ConvNet achieved sensitivity 87.0%, f1-score 
of 87.0%, 88.0% precision [11]. The algorithm achieved 
outstanding performance in detecting pulmonary tuber-
culosis (PTB), with an area under the receiver operating 
characteristic curve (AUC) of 0.878 and a 95% confidence 
interval (CI) ranging from 0.854 to 0.900 in the NTUH-20 
dataset [12]. Swin ResuNet3 was used for segmentation of 
images, and a Multi-scale Attention-based DenseNet with 
an Extreme Learning Machine model was used for classi-
fication of TB [13]. An attention block integrating VGG16 
and VGG19 architectures is employed for classifying TB 
CXRs. In the study by Verma et al. [14], a deep learning 
model was proposed for TB diagnosis, incorporating deep 
learning features alongside Gabor and Canny edge detec-
tion in one approach, and excluding these techniques in 
another, achieving accuracies of 95.7% and 97.9%, respec-
tively [15]. Le et al. [15] used 5 pretrained models: VGG16, 
EfficientB7, MobileNetV3, DenseNet121, and RegNetY040 
for classification of TB, among which MobilenetV3 showed 
the best performance with an accuracy of 98.35%, f1-score 
of 98.32% on TB CXR, Montgomery accuracy of 77.81%, 
and f1-score of 78.92%, and on the Shenzhen dataset –  
an accuracy of 67.19% and f1-score of 74.86%, on the India 
CXR – accuracy of 86.25% and f1-score of 83.75%.

Material and methods

Datasets and preprocessing

For the segmentation task, we utilised the Montgomery 
County and Shenzhen Hospital datasets, both obtained 
from the publicly available “Chest X-ray Masks and La-
bels” dataset on Kaggle. The combined dataset com-
prised 704 CXR images, each paired with corresponding 
segmentation masks. The data was split into 494 images 
(70%) for training, 140 images (20%) for validation, and 
70 images (10%) for testing. To ensure a robust evalua-
tion, we implemented a five-fold cross-validation stra
tegy, allowing each image to be used at least once for both 
training and testing. For the classification task, we used 
the “National Institute of Allergy and Infectious Diseases 
(NIAID) TB Portal Program” dataset, which is part of the 
“Tuberculosis Chest X-ray Images” dataset on Kaggle. 
This dataset included 700 CXR images of TB patients and 
3500 control images. For our experiment, we selected 700 
TB images and 700 control images, which were divided 
into 1120 images (80%) for training, 140 images (10%) 
for validation, and 140 images (10%) for testing. Figure 1 
shows sample images from this dataset.

Before being input into the model, the images were nor-
malised by scaling the pixel values to a [0, 1] range, achieved 
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by dividing each pixel by 255. This normalisation process  
ensures uniformity across the dataset, optimising the model’s 
training performance. Also a gradient based contrast enhan
cement technique with gamma correction is used (Figure 2).

Methods

Figure 2 outlines the methodology employed in this 
study. We started by selecting a well-established chest  
X-ray (CXR) dataset, which included both the images 
and their corresponding segmentation masks for training  
the segmentation model. Before segmentation an en-
hanced gradient based technique for contrast enhance-
ment was used.

Enhanced gradient-based contrast enhancement 
technique with gamma correction

The gradient computation function captures intensity 
changes by comparing each pixel with its neighbours in 
4 directions, emphasising edge-like features. Pyramid 
reduction processes the image at multiple resolutions to 
capture gradients at different scales, mimicking multi-
scale edge detection. Unique mapping and histogram 
matching adjust pixel values based on gradient infor
mation, enhancing contrast by redistributing intensities. 
Finally, gamma correction (with a value of 0.5) boosts 
brightness in darker regions, further improving contrast.

	 Original image	 Processed gradient image	 Contrast enhanced image

Figure 1. Sample images from datasets

Figure 2. Gradient-based contrast enhancement
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Steps for enhanced gradient-based contrast enhan
cement:
1. �Take the original image as input and show the original 

image in greyscale.
2. �Reduce the resolution by the cv2.pyrDown() function 

and perform padding and gradient initialisation.
3. �Do gradient computation by padding the input im-

age, traversing each pixel, extract a 3*3 sub image, and 
compute the differences between the centre pixel and 
its neighbours.

4. �The gradients for original and reduced images should 
be computed at multiple levels.

5. �Perform normalisation of the gradient by ensuring 
a minimum value and computing the geometric mean.

6. Display gradient-based images.
7. Unique mapping and histogram matching.
8. A final contrast image is created and displayed.

Next, we modified and optimised the model to im-
prove its performance. The process began with the selec-
tion of a well-established CXR dataset, which included 
both images and their corresponding segmentation 
masks, for training of the segmentation model. The U-Net 
architecture, a popular model for segmentation tasks, was 
modified and optimised to align with the study’s objec-
tives. The performance of the trained segmentation model 
was assessed using metrics such as accuracy, Dice coeffi-
cient, Jaccard index, and AUC. The model was then applied 
to CXR datasets containing both TB and normal cases to 

segment the lung regions while excluding background in-
formation. Following segmentation, a deep learning CNN 
was developed and fine-tuned to classify the segmented 
lung images. The classification model’s performance was 
evaluated using various metrics, including accuracy, preci-
sion, recall, F1-score, AUC, and ROC curves.

U-Net model (segmentation model)

The U-Net model is a widely recognised and highly effec-
tive architecture for image segmentation, particularly in 
medical applications such as segmenting organs, tissues, 
or lesions in medical scans like CT, MRI, and CXR. It was 
originally designed for bio-medical image segmentation 
but has since become widely adopted for various segmen-
tation tasks. Originally developed by Olaf Ronneberger 
in 2015, U-Net has become one of the most popular and 
effective models for segmentation tasks in medical imag-
ing, especially for analysing radiological images.

Figure 3 illustrates the U-Net architecture, which com-
prises 2 main components: the encoder and the decoder. 
The encoder employs a sequence of convolutional layers 
combined with ReLU activation and max-pooling opera-
tions. Conversely, the decoder reconstructs segmented im-
ages using up-convolution layers, depth concatenation, 
softmax activation, and max pooling. The process starts 
with a 224 × 224 pixel input image, which is processed by 
the encoder to extract features represented as numerical 

Figure 3. Architecture of U-Net
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Figure 4. Segmentation of chest X-ray using U-Net 

values between 0 and 255. These values are normalised 
to a scale of 0 to 1. As the image progresses through  
the encoder, its dimensions decrease after each max pooling 
operation. A bridge channel links the encoder and decoder, 
facilitating the transfer of extracted features. The decoder 
reconstructs the image by interpreting these numerical val-
ues, assigning pixel values below 0.5 to 0 and those equal 
to or greater than 0.5 to 1. Skip connections between the 
encoder and decoder enable the direct transfer of image 
features, ensuring minimal information loss during neu-
ral node processing. The decoder’s final output comprises 
binary images with pixel values of 0 (black) and 1 (white), 
producing black-and-white masks that emphasise regions 
of interest, such as the lung area in CXR. The U-Net model 
was trained for 50 epochs per fold, using a learning rate 
of 0.001 and a dropout rate of 0.25. The batch size was set 
to 4 images per batch for both training and validation.  
The cross-entropy loss function, LCE, is expressed as:

LCE = yi × log(ai) + (1 − yi) log(1 − ai)� (1)

where i represents the index of the sample (e.g. image), 
and yi is the ground truth label, with yi = 1 for the positive 
class and 1 – yi = 0 for the negative class (Figure 4).

Modified U-Net model

For lung image segmentation, the researcher adopted 
a deep learning approach using U-Net with residual con-
nections. U-Net, developed by Olaf Ronneberger et al. for 
biomedical image segmentation, can be further optimised 
by replacing standard convolutional units with residual 
units. Figure 5 shows the architecture of the residual U-net 
Network. U-Net (ResU-Net) combines the advantages 
of both U-Net and residual neural networks to achieve 
better segmentation. results. The ResU-Net architecture 
is designed to simplify network training while preserving 
information flow through its skip connections in residual 
units, preventing degradation. It consists of 3 key compo-
nents: encoding, bridge, and decoding (Figure 5). Figure 6 
illustrates  chest Xray images with actual and predicted 
masks from Res-Unet model

Classification model

The classification model employs a CNN architecture 
specifically designed for image classification. It processes 
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Figure 5. Architecture of Res-UNet
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input images through multiple convolutional layers that 
extract hierarchical features, with each layer followed by 
max pooling. The convolutional layers detect localised 
patterns and features, while max pooling reduces spatial 
dimensions, enhancing computational efficiency and fea-
ture abstraction. The features extracted by these layers 
are then flattened into vector representations and passed 
through multiple fully connected (dense) layers to com-
plete the final classification. These dense layers enable the 
model to capture complex features.

The equation for the dense layer is given below:

y = σ (Wx + b)� (2)

where x – the input vector or tensor, W – the weight ma-
trix, b – the bias vector, σ – the activation function applied 

elementwise, y – the output of the dense (fully connected) 
layer.

The output layer employs the sigmoid activation func-
tion (as shown in Equation 3) to estimate the probability 
of the input image belonging to a specific class.

σ(x) = 1/(1 + e − x) � (3)

Hybrid model 

The hybrid model enables the simultaneous segmen-
tation and classification of input images by leveraging 
the strengths of both approaches. First, the segmentation 
model identifies and generates masks that highlight spe-
cific regions or objects within the image. The segmenta-
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tion masks are subsequently input into the classification 
model, which conducts binary classification using the 
segmented regions. This approach allows the model to 
integrate global context with localised details, improving 
its capability to identify the presence or absence of spe-
cific features in the image. The model employs the binary 
cross-entropy loss function and the Adam optimiser to 

ensure efficient learning across both segmentation and 
classification tasks. The accuracy metric further high-
lights the model’s effectiveness in executing both tasks 
with precision. This hybrid approach provides a flexible 
and reliable solution for complex image analysis, particu-
larly in scenarios requiring continuous segmentation and 
classification.

Figure 6. Predicted and actual mask using Res-Unet
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TBNet-CNN model

The proposed TBNet-CNN model integrates a segmenta-
tion model and a classification model into a single hybrid 
architecture, as illustrated in Figure 7. The process for 
developing and training this hybrid model using Tensor 
flow and Keras is detailed in Algorithm 1. The segmenta-
tion component is initially defined, consisting of convolu-
tional layers for feature extraction and up-sampling layers 
to generate segmentation masks. Next, the classification 
model is defined, incorporating convolutional and dense 
layers specifically designed for image classification tasks. 
These 2 components are then integrated to form the hy-
brid model. The model is trained using labelled data, with 
training data used for model construction and validation 
data for performance monitoring. 

Input: Input shape = (256, 256, 3)
I. Define the segmentation model

1. Initialize input layer:
inputs ← Input (input_shape)
2. First convolutional layer:
�convolution1 ← Conv2D(32, (3, 3), activation=’relu’, 
padding=’same’)(inputs)
3. Max pooling layer:
�pool1 ← MaxPooling2D(pool_size=(2, 2))
(convolution1)
4. Upsampling layer: 

      up1 ← UpSampling2D(size=(2, 2))(pool1)
5. Final convolutional layer for mask generation:
�decoded ← Conv2D(3, (3, 3), activation=’sigmoid’, 
padding=’same’)(up1)
6. �Define segmentation model:
�segmentation_model ← Model(inputs, decoded, 
name=’segmentation_model’)

II. Define the classification model
1. Initialize input layer:
inputs ← Input(input_shape)

2. First convolutional layer:
�convolution1 ← Conv2D(16, (3, 3), activation=’relu’)
(inputs)
3. Max pooling layer:
�pool1 ← MaxPooling2D(pool_size=(2, 2))
(convolution1)
4. Second convolutional layer:
�convolution2 ← Conv2D(32, (3, 3), activation=’relu’)
(pool1)
5. Max pooling layer:
�pool2 ← MaxPooling2D(pool_size=(2, 2))
(convolution2)
6. Third convolutional layer:
�convolution3 ← Conv2D(64, (3, 3), activation=’relu’)
(pool2)
7. Max pooling layer:
�pool3 ← MaxPooling2D(pool_size=(2, 2))
(convolution3)
8. Fourth convolutional layer:
�convolution4 ← Conv2D(64, (3, 3), activation=’relu’)
(pool3)
9. Max pooling layer:
�pool4 ← MaxPooling2D(pool_size=(2, 2))
(convolution4)
10. Fifth convolutional layer:
�convolution5 ← Conv2D(64, (3, 3), activation=’relu’)
(pool4)
11. Max pooling layer:
�pool5 ← MaxPooling2D(pool_size=(2, 2))
(convolution5)
12. Flatten the output:
flatten ← Flatten()(pool5)
13. First dense layer:
�dense1 ← Dense(256, activation=’relu’)(flatten)Final 
14. Output layer (sigmoid):
output ← Dense(1, activation=’sigmoid’)(dense1)

III. �Combine the segmentation and classification models
1. Initialise input tensor:

Figure 7. TBNet-CNN model
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input_tensor ← Input(input_shape)
2. Apply segmentation model:
�segmentation_output ← segmentation_model(input_
tensor)
3. Apply classification model:
�classification_output ← classification_
model(segmentation_output)
4. Create hybrid model:
�hybrid_model ← Model(inputs=input_tensor, 
outputs=classification_output, name=’hybrid_model’)

IV. Compile and train the hybrid model
1. Compile the hybrid model:
�hybrid_model.compile(optimizer=’adam’, 
loss=’binary_crossentropy’, metrics=[‘accuracy’,’dice_
coeff ’,’jaccard_index’]) 
2. Define log directory for tensorboard:
logdir = ‘logs’
3. Train the model:
�hist ← hybrid_model.fit(train, epochs=25, validation_
data=val, callbacks=[tensorboard_callback])

Pseudo-code for TB detection system

The pseudocode in the proposed model section outlines 
the system’s workflow, including input processing, seg-
mentation, classification, and the final output. The process 
begins with an input image of size 256 × 256 × 3, which is 
first processed by the segmentation model. This involves 
encoding the image using Conv2D and MaxPooling2D 
layers, followed by decoding with Upsampling2D and 
Conv2D layers to generate the segmented output. The seg-
mented images are then passed to the classification model 
for further analysis. During classification, the images are 
processed through several Conv2D and MaxPooling2D 
layers, followed by a Flatten layer and 2 Dense layers to 
produce the final classification. This hybrid approach 
seamlessly integrates segmentation and classification, of-
fering a robust solution.
1. Specify the input image shape:

�Set the input shape to 256 × 256 × 256 (height, 
width, and RGB channels).

2. Construct the segmentation model:
�a) Input layer: Establish the input layer for the model. 
b) Encoder: Employ a series of Conv2D and 
MaxPooling2D layers to extract hierarchical features. 
c) Decoder: Use UpSampling2D and Conv2D 
layers to recover spatial dimensions and refine the 
segmented output.
�d) Output layer: Use a sigmoid activation function 
for pixel-wise binary classification.

3. Build the classification model: 
�a) Input layer: Define the input layer for the 
classification model. 
b) Convolutional layers: Use a sequence of Conv2D 
and MaxPooling2D layers to extract important 
features.
�c) Flatten layer: Flatten the feature maps into a 1D vector.

d) �Dense layers: Use fully connected layers with Relu 
activation for complex feature interactions.

�e) Output layer: Use a sigmoid activation function 
for binary classification.

4. Integrate the models: 
�a) Use the output from the segmentation model as 
input for the classification model. 
�b) Define the hybrid model by combining the seg
mentation and classification components into a unified 
framework.

5. �Compile and summarise the hybrid model: Compile 
the hybrid model with a suitable optimiser and loss 
function, and generate a summary of its architecture.

Results
This section offers a detailed overview of the evaluation 
metrics employed to measure the performance of the 
TBNet-CNN model. These metrics are crucial for deter-
mining how effectively the model identifies patterns and 
makes predictions, serving as key indicators of its over-
all performance. Accuracy is a key metric for classifica-
tion models, representing the ratio of correctly predicted 
instances to the total number of instances, providing an 
overall assessment of prediction reliability. Recall mea-
sures the model’s ability to accurately identify positive 
instances, which is especially important when detecting 
all positive cases is critical. The F1-score, which combines 
precision and recall into a harmonic mean, provides a bal-
anced evaluation of the model’s performance, especially 
when both metrics are equally important or when deal-
ing with imbalanced classes. Additionally, the confusion 
matrix offers a comprehensive breakdown of the model’s 
predictions compared to the actual ground truth labels, 
consisting of 4 key elements: false positives (FP), false 
negatives (FN), true positives (TP), and true negatives 
(TN). This enables a deeper analysis of the model’s pre-
dictive accuracy and error patterns. The equations for 
f1_score, recall, and precision are given below:

f1_score = 2*(Precision*Recall)/(Precision + Recall)      �  (4)

Recall = True Positive/(True Positive + False Negative)    � (5) 

Precision = True Positive/(True Positive + False Positive)                                       �  (6)

Accuracy = True Positive + True Negative/(True Positive + True Negative +  
False Positive + False Negative)                 � (7)

Loss curves and accuracy curves for pre-trained and 
TBCNN-net models are shown in Figure 8.

Tb-CNN net accuracy seemed to be higher than other 
pre-trained models, and the loss is also low compared to 
other models.

U-Net and Res-UNet loss and accuracy curves are 
shown in Figure 9. From this figure we can see that Res-
UNet performs better than U-Net.
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Figure 8. Loss and accuracy curves of different CNN models. A) Loss and accuracy curves for TBCNN-net. B) Loss and accuracy curves for VGG16. C) Loss 
and accuracy curves for DenseNet121. D) Loss and accuracy curves for VGG19. E) Loss and accuracy for ResNet50. F) Loss and accuracy curves for Xception
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Figure 9. Loss and accuracy curves of U-Net and ResUNet

Table 1. ResUNet and U-Net model performance metrics

Model name Accuracy Recall f1_score Precision Dice_coeff

U-Net 97.77 98.08 97.8 97.52 96.53

Res-Unet 98.18 98.40 91.97 98.39 96.33
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Table 2. Metrics of performance between TBCNN-net and other pre-trained models

Model name Accuracy Precision Recall f1_score

VGG16 81.35 55 52 50

VGG19 80.59 51 51 49

DenseNet121 80.24 53 51 50

Xception 79.65 49 50 48

InceptionV3 79.17 49 50 48

ResNet50 83.35 42 50 45

TBCNN-net 99.45 99.03 99.29 99.29
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Figure 10. Confusion matrix of all pre-trained and TBCNN-net models.  
A) Confusion matrix of DenseNet121. B) Confusion matrix of InceptionV3.  
C) Confusion matrix of Xception. D) Confusion matrix of VGG16. E) Confusion 
matrix of VGG19. F) Confusion matrix of TBCNN-net. G) Confusion matrix of 
ResNet50
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Table 1 shows the accuracy of ResUnet is 98.18, recall 
is 98.40, precision is 98.39 which is quite more as com-
pared to that of Unet. Only f1_score and dice coefficient  
is little less. But on an average the performance of ResUnet 
is quite good as compared with Unet Model.

Discussion
Confusion matrices for TBCNN-net and other pretrained 
models are shown in Figure 10.

As compared to other pre-trained models, TBCNN-net 
performed with 348 predicted and actual TB cases, followed 
by DenseNet121 with 11, VGG16 with 10 cases, VGG19  
with 9, InceptionV3 with 7, and Xception with 6 cases.

Table 2 shows that the TBCNN-net has the greatest ac-
curacy.

Figure 11 shows heatmap for segmented images indi-
cating presence of disease infected regions.

Conclusions
This study introduces a novel deep learning-based 
CNN model, TBCNN-net, designed to detect TB from  

X-ray images. The model employs a two-stage architec-
ture, combining a segmentation module with a classifica-
tion module to enhance prediction accuracy. Compre-
hensive evaluations highlight the system’s reliability and 
practicality, outperforming previous methods in terms 
of accuracy of 99.45% and recall of 99.29%. Addition-
ally, its superior Jaccard index of 96.05% and Dice coef-
ficient of 96.33% further validate its performance using 
residual U-net architecture. When tested on unseen im-
ages, TBCNN-net demonstrated robustness and strong 
generalisation across diverse datasets, maintaining high 
accuracy. Future research will focus on integrating mul-
timodal data, including genetic information and clinical 
metadata, to create more advanced diagnostic tools and 
deepen insights into it. TB detection values further vali-
date its performance. 
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Figure 11. Heatmap for segmented images using gradCAM
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